RESUMEN
Gait disturbance is a common and severe symptom of Parkinson's disease that severely impairs quality of life. Current treatments provide only partial benefits with wide variability in outcomes. Also, deep brain stimulation of the subthalamic nucleus (STN-DBS), a mainstay treatment for bradykinetic-rigid symptoms and parkinsonian tremor, is poorly effective on gait. We applied a novel DBS paradigm, adjusting the current amplitude linearly with respect to subthalamic beta power (adaptive DBS), in one parkinsonian patient with gait impairment and chronically stimulated with conventional DBS. We studied the kinematics of gait and gait initiation (anticipatory postural adjustments) as well as subthalamic beta oscillations with both conventional and adaptive DBS. With adaptive DBS, the patient showed a consistent and long-lasting improvement in walking while retaining benefits on other disease-related symptoms. We suggest that adaptive DBS can benefit gait in Parkinson's disease possibly by avoiding overstimulation and dysfunctional entrainment of the supraspinal locomotor network.
RESUMEN
OBJECTIVES: Parkinsonian syndromes are disabling neurodegenerative diseases resulting in reduced muscle function/performance and sarcopenia, but clinical manifestations could be systemic, including deterioration of cognitive function. As studies have reported an association between muscle dysfunction and cognitive decline yet no information on these syndromes is available, we investigated the relationship between sarcopenia, its components, and cognitive function, fatigue, and quality of life (QoL). METHODS: Consecutive patients affected by parkinsonian syndromes were assessed for the presence of sarcopenia using the European Working Group on Sarcopenia in Older People-2 algorithm: low strength (handgrip strength: <27 kg [men]; <16 kg [women]) and low appendicular skeletal muscle index by impedance (<7.0 kg/m2 [men]; <6.0 kg/m2 [women]). Cognitive function was evaluated using the Montreal Cognitive Assessment, the Mini Mental State Examination and the Frontal Assessment Battery. Fatigue and QoL were assessed using the 16-item Parkinson's Disease Fatigue Scale and the 39-item Parkinson's Disease Questionnaire, respectively. RESULTS: In total, 314 patients were included: 198 presented with low strength (63.0% probable sarcopenia); 68 (21.7%) of these were diagnosed with sarcopenia. After adjusting for multiple confounders, we observed a significant effect (poorer score) of both low strength only and sarcopenia on Montreal Cognitive Assessment, Mini Mental State Examination, and QoL. Only reduced muscle strength had a relevant impact on the outcomes considered. CONCLUSIONS: Sarcopenia is associated with worse cognitive functions and QoL in patients with parkinsonian syndromes, with muscle dysfunction playing a major role. The prognostic impact of sarcopenia and its components should be addressed in prospective studies.
RESUMEN
The main genetic risk factors for Parkinson's disease (PD) are presently represented by variants in GBA1 gene encoding for the ß-glucocerebrosidase (GCase). Searching for a peripheral biomarker that can be used for selecting and monitoring patients in clinical trials targeting GBA1-associated PD (GBA1-PD) is a current challenge. We previously demonstrated that α-synuclein oligomers expressed as proximity ligation assay (PLA) score in synaptic terminals of skin biopsy are a reliable biomarker for distinguishing idiopathic PD (iPD) from healthy controls (HC). This cross-sectional study investigates an unexplored cohort of GBA1-PD (n = 27) compared to 28 HC, and 36 iPD cases to (i) analyze α-synuclein oligomers and quantify them throughout PLA score, (ii) investigate GCase expression in brain and synaptic terminals targeting the sweat gland, (iii) unravel indicators that could differentiate patients with specific GBA1 mutations. PLA score discriminates GBA1-PD from HC with sensitivity = 88.9% (95% CI 70.84-97.65), specificity = 88.5% (95% CI 69.85-97.55), and PPV = 88.9% (95% CI 73.24-95.90), AUC value = 0.927 (95% CI 0.859-0.996). No difference was found between GBA1-PD patients and iPD, suggesting a common pathological pathway based on α-synuclein oligomers. GCase score did not differ in GBA1-PD, iPD, and HC in the synaptic terminals, whereas a positive correlation was found between PLA score and GCase score. Moreover, a significant increase in synaptic density was observed in GBA1-PD compared to iPD and HC (P < 0.0001). Employing ROC curve to discriminate GBA1-PD from iPD, we found an AUC value for synaptic density = 0.855 (95% CI 0.749-0.961) with sensitivity = 85.2% (95% CI 66.27%-95.81%), specificity = 77.1% (95% CI 59.86%-89.58%), and PPV = 74.19% (60.53%-84.35%). The highest synaptic density values were observed in p.N409S patients. This work points out to the value of both PLA score and synaptic density in distinguishing GBA1-PD from iPD and to their potential to stratify and monitor patients in the context of new pathway-specific therapeutic options.
Asunto(s)
Biomarcadores , Glucosilceramidasa , Enfermedad de Parkinson , Piel , Sinapsis , alfa-Sinucleína , Humanos , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , alfa-Sinucleína/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Masculino , Femenino , Anciano , Persona de Mediana Edad , Piel/patología , Piel/metabolismo , Biomarcadores/metabolismo , Biopsia/métodos , Sinapsis/patología , Sinapsis/metabolismo , Estudios Transversales , Mutación , Encéfalo/patología , Encéfalo/metabolismo , Anciano de 80 o más AñosRESUMEN
Objective: Our study investigates the impact of copy number variations (CNVs) on Parkinson's disease (PD) pathogenesis using genome-wide data, aiming to uncover novel genetic mechanisms and improve the understanding of the role of CNVs in sporadic PD. Methods: We applied a sliding window approach to perform CNV-GWAS and conducted genome-wide burden analyses on CNV data from 11,035 PD patients (including 2,731 early-onset PD (EOPD)) and 8,901 controls from the COURAGE-PD consortium. Results: We identified 14 genome-wide significant CNV loci associated with PD, including one deletion and 13 duplications. Among these, duplications in 7q22.1, 11q12.3 and 7q33 displayed the highest effect. Two significant duplications overlapped with PD-related genes SNCA and VPS13C, but none overlapped with recent significant SNP-based GWAS findings. Five duplications included genes associated with neurological disease, and four overlapping genes were dosage-sensitive and intolerant to loss-of-function variants. Enriched pathways included neurodegeneration, steroid hormone biosynthesis, and lipid metabolism. In early-onset cases, four loci were significantly associated with EOPD, including three known duplications and one novel deletion in PRKN. CNV burden analysis showed a higher prevalence of CNVs in PD-related genes in patients compared to controls (OR=1.56 [1.18-2.09], p=0.0013), with PRKN showing the highest burden (OR=1.47 [1.10-1.98], p=0.026). Patients with CNVs in PRKN had an earlier disease onset. Burden analysis with controls and EOPD patients showed similar results. Interpretation: This is the largest CNV-based GWAS in PD identifying novel CNV regions and confirming the significant CNV burden in EOPD, primarily driven by the PRKN gene, warranting further investigation.
RESUMEN
BACKGROUND AND OBJECTIVES: The role of body mass index (BMI) in Parkinson disease (PD) is unclear. Based on the Comprehensive Unbiased Risk Factor Assessment for Genetics and Environment in PD (Courage-PD) consortium, we used 2-sample Mendelian randomization (MR) to replicate a previously reported inverse association of genetically predicted BMI with PD and investigated whether findings were robust in analyses addressing the potential for survival and incidence-prevalence biases. We also examined whether the BMI-PD relation is bidirectional by performing a reverse MR. METHODS: We used summary statistics from a genome-wide association study (GWAS) to extract the association of 501 single-nucleotide polymorphisms (SNPs) with BMI and from the Courage-PD and international Parkinson Disease Genomics Consortium (iPDGC) to estimate their association with PD. Analyses are based on participants of European ancestry. We used the inverse-weighted method to compute odds ratios (ORIVW per 4.8 kg/m2 [95% CI]) of PD and additional pleiotropy robust methods. We performed analyses stratified by age, disease duration, and sex. For reverse MR, we used SNPs associated with PD from 2 iPDGC GWAS to assess the effect of genetic liability toward PD on BMI. RESULTS: Summary statistics for BMI are based on 806,834 participants (54% women). Summary statistics for PD are based on 8,919 (40% women) cases and 7,600 (55% women) controls from Courage-PD, and 19,438 (38% women) cases and 24,388 (51% women) controls from iPDGC. In Courage-PD, we found an inverse association between genetically predicted BMI and PD (ORIVW 0.82 [0.70-0.97], p = 0.012) without evidence for pleiotropy. This association tended to be stronger in younger participants (≤67 years, ORIVW 0.71 [0.55-0.92]) and cases with shorter disease duration (≤7 years, ORIVW 0.75 [0.62-0.91]). In pooled Courage-PD + iPDGC analyses, the association was stronger in women (ORIVW 0.85 [0.74-0.99], p = 0.032) than men (ORIVW 0.92 [0.80-1.04], p = 0.18), but the interaction was not statistically significant (p-interaction = 0.48). In reverse MR, there was evidence for pleiotropy, but pleiotropy robust methods showed a significant inverse association. DISCUSSION: Using an independent data set (Courage-PD), we replicate an inverse association of genetically predicted BMI with PD, not explained by survival or incidence-prevalence biases. Moreover, reverse MR analyses support an inverse association between genetic liability toward PD and BMI, in favor of a bidirectional relation.
Asunto(s)
Índice de Masa Corporal , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Enfermedad de Parkinson , Polimorfismo de Nucleótido Simple , Humanos , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/epidemiología , Polimorfismo de Nucleótido Simple/genética , Femenino , Masculino , Persona de Mediana Edad , Anciano , Factores de RiesgoRESUMEN
Despite substantial progress, causal variants are identified only for a minority of familial Parkinson's disease (PD) cases, leaving high-risk pathogenic variants unidentified1,2. To identify such variants, we uniformly processed exome sequencing data of 2,184 index familial PD cases and 69,775 controls. Exome-wide analyses converged on RAB32 as a novel PD gene identifying c.213C > G/p.S71R as a high-risk variant presenting in ~0.7% of familial PD cases while observed in only 0.004% of controls (odds ratio of 65.5). This variant was confirmed in all cases via Sanger sequencing and segregated with PD in three families. RAB32 encodes a small GTPase known to interact with LRRK2 (refs. 3,4). Functional analyses showed that RAB32 S71R increases LRRK2 kinase activity, as indicated by increased autophosphorylation of LRRK2 S1292. Here our results implicate mutant RAB32 in a key pathological mechanism in PD-LRRK2 kinase activity5-7-and thus provide novel insights into the mechanistic connections between RAB family biology, LRRK2 and PD risk.
Asunto(s)
Predisposición Genética a la Enfermedad , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Proteínas de Unión al GTP rab , Humanos , Enfermedad de Parkinson/genética , Proteínas de Unión al GTP rab/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Femenino , Masculino , Linaje , Persona de Mediana Edad , Mutación , Exoma/genética , Secuenciación del Exoma , Estudios de Casos y Controles , AncianoRESUMEN
Parkinson's disease (PD) is a progressive and disabling neurodegenerative disease that rapidly worsens and results in premature mortality if left untreated. Although levodopa is the gold standard treatment for PD globally, its accessibility and affordability are severely limited in low- and middle-income countries worldwide. In this scenario, Mucuna pruriens (MP), a leguminous plant growing wild in tropical regions, emerges as a potential alternative or adjunct to levodopa-based medications due to its cost-effectiveness and global natural availability. Recent studies have demonstrated that MP can significantly ameliorate motor symptoms, although tolerability may vary. The proposition that MP could play a pivotal role in providing affordable and symptomatic relief for PD in low- and middle-income countries is grounded in its promising therapeutic profile, yet caution is warranted until more comprehensive data on the long-term safety and efficacy of MP become available. This manuscript summarizes the knowledge gained about MP by the authors, focusing on how to cultivate, store, and provide it to patients in the safest and most effective way in clinical trials. We aim to increase clinical trials investigating its safety and efficacy in PD, before promoting individual use of MP on a global scale, particularly in countries where availability and affordability of levodopa-based medications is still limited.
Asunto(s)
Países en Desarrollo , Mucuna , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Fitoterapia , Ensayos Clínicos como Asunto , Guías de Práctica Clínica como Asunto/normas , Antiparkinsonianos/uso terapéutico , Antiparkinsonianos/economía , Extractos Vegetales/uso terapéuticoRESUMEN
Analysis of coupling between the phases and amplitudes of neural oscillations has gained increasing attention as an important mechanism for large-scale brain network dynamics. In Parkinson's disease (PD), preliminary evidence indicates abnormal beta-phase coupling to gamma-amplitude in different brain areas, including the subthalamic nucleus (STN). We analyzed bilateral STN local field potentials (LFPs) in eight subjects with PD chronically implanted with deep brain stimulation electrodes during upright quiet standing and unperturbed walking. Phase-amplitude coupling (PAC) was computed using the Kullback-Liebler method, based on the modulation index. Neurophysiological recordings were correlated with clinical and kinematic measurements and individual molecular brain imaging studies ([123I]FP-CIT and single-photon emission computed tomography). We showed a dopamine-related increase in subthalamic beta-gamma PAC from standing to walking. Patients with poor PAC modulation and low PAC during walking spent significantly more time in the stance and double support phase of the gait cycle. Our results provide new insights into the subthalamic contribution to human gait and suggest cross-frequency coupling as a gateway mechanism to convey patient-specific information of motor control for human locomotion.
Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Estimulación Encefálica Profunda/métodos , Enfermedad de Parkinson/terapia , Marcha/fisiología , CaminataRESUMEN
INTRODUCTION: Parkinson's disease (PD) and type-2 diabetes (T2D) arguably share pathophysiologic mechanisms, resulting in a more severe phenotype and progression and diabetes is currently considered a risk factor of PD. Besides, research suggests antidiabetic therapies as potential disease-modifying strategies. The main aim was to assess the impact of a metformin-inclusive antidiabetic treatment on patient all-cause mortality. METHODS: A nested case-control prospective study including newly diagnosed PD patients reporting the onset of T2D within ±2 years from the onset of PD (n = 159) and matched (1:5; gender, year of PD onset and age at PD onset) non-diabetic cases (n = 795) followed until death or censoring. Patients on a metformin-inclusive treatment regimen were compared to those receiving other oral anti-diabetics (OADs). RESULTS: Among patients with T2D, 123 were treated with a drug regimen containing metformin (alone [65.0%] or in combination with other drugs [35.0%]) and 36 were prescribed other OADs. During a median PD duration of 96 months [IQR, 60-144], 171 patients died. Diabetes was not associated with reduced survival: fully-adjusted HR = 1.19 [95%CI, 0.81-1.76] (P = 0.37). After stratifying for T2D treatment, a metformin-inclusive regimen was not associated with increased risk of death (HR = 1.06 [95%CI, 0.61-1.84]; P = 0.83), while patients receiving other OADs had reduced survival (HR = 1.83 [95%CI, 1.01-3.32]; P = 0.034). CONCLUSIONS: Metformin use was not associated with increased risk of death in diabetic patients with PD reporting concomitant onset of the two diseases. Metformin appears to be a promising disease-modifying therapy given also the preclinical background, low cost and satisfactory safety and tolerability. Further studies are warranted to investigate its impact on disease progression.
Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Enfermedad de Parkinson , Humanos , Metformina/uso terapéutico , Estudios Prospectivos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológicoRESUMEN
Highly specialized microtubules in neurons are crucial to both health and disease of the nervous system, and their properties are strictly regulated by different post-translational modifications, including α-Tubulin acetylation. An imbalance in the levels of acetylated α-Tubulin has been reported in experimental models of Parkinson's disease (PD) whereas pharmacological or genetic modulation that leads to increased acetylated α-Tubulin successfully rescues axonal transport defects and inhibits α-Synuclein aggregation. However, the role of acetylation of α-Tubulin in the human nervous system is largely unknown as most studies are based on in vitro evidence. To capture the complexity of the pathological processes in vivo, we analysed post-mortem human brain of PD patients and control subjects. In the brain of PD patients at Braak stage 6, we found a redistribution of acetylated α-Tubulin, which accumulates in the neuronal cell bodies in subcortical structures but not in the cerebral cortex, and decreases in the axonal compartment, both in putamen bundles of fibres and in sudomotor fibres. High-resolution and 3D reconstruction analysis linked acetylated α-Tubulin redistribution to α-Synuclein oligomerization and to phosphorylated Ser 129 α-Synuclein, leading us to propose a model for Lewy body (LB) formation. Finally, in post-mortem human brain, we observed threadlike structures, resembling tunnelling nanotubes that contain α-Synuclein oligomers and are associated with acetylated α-Tubulin enriched neurons. In conclusion, we support the role of acetylated α-Tubulin in PD pathogenesis and LB formation.
RESUMEN
BACKGROUND: Mutations in ANO3 are a rare cause of autosomal dominant isolated or combined dystonia, mainly presenting in adulthood. CASES: We extensively characterize a new, large ANO3 family with six affected carriers. The proband is a young girl who had suffered from tremor and painful dystonic movements in her right arm since the age of 11 years. She later developed a diffuse dystonic tremor and mild extrapyramidal signs (ie, rigidity and hypodiadochokinesis) in her right arm. She also suffered from psychomotor delay and learning difficulties. Repeated structural and functional neuroimaging were unremarkable. A dystonic tremor was also present in her two sisters. Her paternal aunt, father, and a third older sister presented episodic postural tremor in the arms. The father and one sister also presented learning difficulties. The heterozygous p.G6V variant in ANO3 was identified in all affected subjects. LITERATURE REVIEW: Stratification by age at onset divided ANO3 cases into two major groups, where younger patients displayed a more severe phenotype, probably due to variants near the scrambling domain. CONCLUSIONS: We describe the phenotype of a new ANO3 family and highlight the need for functional studies to explore the impact of ANO3 variants on its phospholipid scrambling activity.
Asunto(s)
Distonía , Trastornos Distónicos , Humanos , Femenino , Niño , Temblor/diagnóstico , Trastornos Distónicos/genética , Distonía/genética , Mutación , Fenotipo , Anoctaminas/genéticaRESUMEN
The pathophysiology of tremor in Parkinson's disease (PD) is evolving towards a complex alteration to monoaminergic innervation, and increasing evidence suggests a key role of the locus coeruleus noradrenergic system (LC-NA). However, the difficulties in imaging LC-NA in patients challenge its direct investigation. To this end, we studied the development of tremor in a reserpinized rat model of PD, with or without a selective lesioning of LC-NA innervation with the neurotoxin DSP-4. Eight male rats (Sprague Dawley) received DSP-4 (50 mg/kg) two weeks prior to reserpine injection (10 mg/kg) (DR-group), while seven male animals received only reserpine treatment (R-group). Tremor, rigidity, hypokinesia, postural flexion and postural immobility were scored before and after 20, 40, 60, 80, 120 and 180 min of reserpine injection. Tremor was assessed visually and with accelerometers. The injection of DSP-4 induced a severe reduction in LC-NA terminal axons (DR-group: 0.024 ± 0.01 vs. R-group: 0.27 ± 0.04 axons/um2, p < 0.001) and was associated with significantly less tremor, as compared to the R-group (peak tremor score, DR-group: 0.5 ± 0.8 vs. R-group: 1.6 ± 0.5; p < 0.01). Kinematic measurement confirmed the clinical data (tremor consistency (% of tremor during 180 s recording), DR-group: 37.9 ± 35.8 vs. R-group: 69.3 ± 29.6; p < 0.05). Akinetic-rigid symptoms did not differ between the DR- and R-groups. Our results provide preliminary causal evidence for a critical role of LC-NA innervation in the development of PD tremor and foster the development of targeted therapies for PD patients.
Asunto(s)
Enfermedad de Parkinson , Temblor , Humanos , Masculino , Animales , Ratas , Ratas Sprague-Dawley , Temblor/inducido químicamente , Reserpina/farmacología , Encéfalo , NorepinefrinaRESUMEN
Emerging evidence supports that altered α-tubulin acetylation occurs in Parkinson's disease (PD), a neurodegenerative disorder characterized by the deposition of α-synuclein fibrillary aggregates within Lewy bodies and nigrostriatal neuron degeneration. Nevertheless, studies addressing the interplay between α-tubulin acetylation and α-synuclein are lacking. Here, we investigated the relationship between α-synuclein and microtubules in primary midbrain murine neurons and the substantia nigra of post-mortem human brains. Taking advantage of immunofluorescence and Proximity Ligation Assay (PLA), a method allowing us to visualize protein-protein interactions in situ, combined with confocal and super-resolution microscopy, we found that α-synuclein and acetylated α-tubulin colocalized and were in close proximity. Next, we employed an α-synuclein overexpressing cellular model and tested the role of α-tubulin acetylation in α-synuclein oligomer formation. We used the α-tubulin deacetylase HDAC6 inhibitor Tubacin to modulate α-tubulin acetylation, and we evaluated the presence of α-synuclein oligomers by PLA. We found that the increase in acetylated α-tubulin significantly induced α-synuclein oligomerization. In conclusion, we unraveled the link between acetylated α-tubulin and α-synuclein and demonstrated that α-tubulin acetylation could trigger the early step of α-synuclein aggregation. These data suggest that the proper regulation of α-tubulin acetylation might be considered a therapeutic strategy to take on PD.
Asunto(s)
Enfermedad de Parkinson , Tubulina (Proteína) , alfa-Sinucleína , Animales , Humanos , Ratones , Cuerpos de Lewy , MicrotúbulosRESUMEN
BACKGROUND: Speech impairment is commonly reported in Parkinson's disease and is not consistently improved by available therapies - including deep brain stimulation of the subthalamic nucleus (STN-DBS), which can worsen communication performance in some patients. Improving the outcome of STN-DBS on speech is difficult due to our incomplete understanding of the contribution of the STN to fluent speaking. OBJECTIVE: To assess the relationship between subthalamic neural activity and speech production and intelligibility. METHODS: We investigated bilateral STN local field potentials (LFPs) in nine parkinsonian patients chronically implanted with DBS during overt reading. LFP spectral features were correlated with clinical scores and measures of speech intelligibility. RESULTS: Overt reading was associated with increased beta-low ([1220) Hz) power in the left STN, whereas speech intelligibility correlated positively with beta-high ([2030) Hz) power in the right STN. CONCLUSION: We identified separate contributions from frequency and brain lateralization of the STN in the execution of an overt reading motor task and its intelligibility. This subcortical organization could be exploited for new adaptive stimulation strategies capable of identifying the occurrence of speaking behavior and facilitating its functional execution.
Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Habla/fisiología , CogniciónRESUMEN
Alpha-synuclein inclusions are the distinctive trait of brain areas affected by neurodegeneration in Parkinson's disease (PD). Nevertheless, PD is now considered as a multisystemic disorder, since alpha-synuclein pathology has been described also outside the central nervous system. In this regard, the early, non-motor autonomic symptoms point out an important role for the peripheral nervous system during disease progression. On this basis, we propose a review of the alpha-synuclein-related pathological processes observed at peripheral level in PD, starting from molecular mechanisms, through cellular processes to systemic modifications. We discuss their relevance in the etiopathogenesis of the disease, suggesting they are concurrent players in the development of PD, and that the periphery is an easily-accessible window to look at what is occurring in the central nervous system.
Asunto(s)
Enfermedad de Parkinson , Humanos , alfa-Sinucleína , Sistema Nervioso Central , Encéfalo , Progresión de la EnfermedadRESUMEN
BACKGROUND AND PURPOSE: The role of the gut microbiome in the pathogenesis of Parkinson disease (PD) is under intense investigation, and the results presented are still very heterogeneous. These discrepancies arise not only from the highly heterogeneous pathology of PD, but also from widely varying methodologies at all stages of the workflow, from sampling to final statistical analysis. The aim of the present work is to harmonize the workflow across studies to reduce the methodological heterogeneity and to perform a pooled analysis to account for other sources of heterogeneity. METHODS: We performed a systematic review to identify studies comparing the gut microbiota of PD patients to healthy controls. A workflow was designed to harmonize processing across all studies from bioinformatics processing to final statistical analysis using a Bayesian random-effects meta-analysis based on individual patient-level data. RESULTS: The results show that harmonizing workflows minimizes differences between statistical methods and reveals only a small set of taxa being associated with the pathogenesis of PD. Increased shares of the genera Akkermansia and Bifidobacterium and decreased shares of the genera Roseburia and Faecalibacterium were most characteristic for PD-associated microbiota. CONCLUSIONS: Our study summarizes evidence that reduced levels of butyrate-producing taxa in combination with possible degradation of the mucus layer by Akkermansia may promote intestinal inflammation and reduced permeability of the gut mucosal layer. This may allow potentially pathogenic metabolites to transit and enter the enteric nervous system.
RESUMEN
OBJECTIVES: There is growing evidence that Parkinson's disease and diabetes are partially related diseases; however, the association between the two, and the impact of specific treatments, are still unclear. We evaluated the effect of T2D and antidiabetic treatment on age at PD onset and on all-cause mortality. RESEARCH DESIGN AND METHODS: The standardized rate of T2D was calculated for PD patients using the direct method and compared with subjects with essential tremor (ET) and the general Italian population. Age at onset and survival were also compared between patients without T2D (PD-noT2D), patients who developed T2D before PD onset (PD-preT2D) and patients who developed T2D after PD onset (PD-postT2D). RESULTS: We designed a retrospective and prospective study. The T2D standardized ratio of PD (N = 8380) and ET (N = 1032) patients was 3.8% and 6.1%, respectively, while in the Italian general population, the overall prevalence was 5.3%. In PD-preT2D patients, on antidiabetic treatment, the onset of PD was associated with a + 6.2 year delay (p < 0.001) while no difference was observed in PD-postT2D. Occurrence of T2D before PD onset negatively affected prognosis (adjusted hazard ratio = 1.64 [95% CI 1.33-2.02]; p < 0.001), while no effect on survival was found in PD-postT2D subjects (hazard ratio = 0.86, [95% CI 0.53-1.39]; p = 0.54). CONCLUSIONS: T2D, treated with any antidiabetic therapy before PD, is associated with a delay in its onset. Duration of diabetes increases mortality in PD-preT2D, but not in PD-postT2D. These findings prompt further studies on antidiabetic drugs as a potential disease-modifying therapy for PD.
Asunto(s)
Diabetes Mellitus Tipo 2 , Temblor Esencial , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/complicaciones , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/epidemiología , Estudios Retrospectivos , Estudios Prospectivos , Temblor Esencial/complicaciones , Hipoglucemiantes/uso terapéuticoRESUMEN
Looking at the puzzle that depicts the molecular determinants in neurodegeneration, many pieces are lacking and multiple interconnections among key proteins and intracellular pathways still remain unclear. Here we focus on the concerted action of α-synuclein and the microtubule cytoskeleton, whose interplay, indeed, is emerging but remains largely unexplored in both its physiology and pathology. α-Synuclein is a key protein involved in neurodegeneration, underlying those diseases termed synucleinopathies. Its propensity to interact with other proteins and structures renders the identification of neuronal death trigger extremely difficult. Conversely, the unbalance of microtubule cytoskeleton in terms of structure, dynamics and function is emerging as a point of convergence in neurodegeneration. Interestingly, α-synuclein and microtubules have been shown to interact and mediate cross-talks with other intracellular structures. This is supported by an increasing amount of evidence ranging from their direct interaction to the engagement of in-common partners and culminating with their respective impact on microtubule-dependent neuronal functions. Last, but not least, it is becoming even more clear that α-synuclein and tubulin work synergically towards pathological aggregation, ultimately resulting in neurodegeneration. In this respect, we supply a novel perspective towards the understanding of α-synuclein biology and, most importantly, of the link between α-synuclein with microtubule cytoskeleton and its impact for neurodegeneration and future development of novel therapeutic strategies.
Asunto(s)
Citoesqueleto , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Neuronas/metabolismoRESUMEN
Freezing of gait (FOG) is a sudden episodic inability to produce effective stepping despite the intention to walk. It typically occurs during gait initiation (GI) or modulation and may lead to falls. We studied the anticipatory postural adjustments (imbalance, unloading, and stepping phase) at GI in 23 patients with Parkinson's disease (PD) and FOG (PDF), 20 patients with PD and no previous history of FOG (PDNF), and 23 healthy controls (HCs). Patients performed the task when off dopaminergic medications. The center of pressure (CoP) displacement and velocity during imbalance showed significant impairment in both PDNF and PDF, more prominent in the latter patients. Several measurements were specifically impaired in PDF patients, especially the CoP displacement along the anteroposterior axis during unloading. The pattern of segmental center of mass (SCoM) movements did not show differences between groups. The standing postural profile preceding GI did not correlate with outcome measurements. We have shown impaired motor programming at GI in Parkinsonian patients. The more prominent deterioration of unloading in PDF patients might suggest impaired processing and integration of somatosensory information subserving GI. The unaltered temporal movement sequencing of SCoM might indicate some compensatory cerebellar mechanisms triggering time-locked models of body mechanics in PD.
RESUMEN
Background: Aggregates of TAR DNA-binding protein of 43 kDa (TDP-43) represent the pathological hallmark of most amyotrophic lateral sclerosis (ALS) and of nearly 50% of frontotemporal dementia (FTD) cases but were also observed to occur as secondary neuropathology in the nervous tissue of patients with different neurodegenerative diseases, including Parkinson's disease (PD) and atypical parkinsonism. Mutations of TARDBP gene, mainly in exon 6 hotspot, have been reported to be causative of some forms of ALS and FTD, with clinical signs of parkinsonism observed in few mutation carriers. Methods: Direct DNA sequencing of TARDBP exon 6 was performed in a large Italian cohort of 735 patients affected by PD (354 familial and 381 sporadic) and 142 affected by atypical parkinsonism, including 39 corticobasal syndrome (CBS) and 103 progressive sopranuclear palsy (PSP). Sequencing data from 1710 healthy, ethnically matched controls were already available. Results: Four TARDBP missense variants (p.N267S, p. G294A, p.G295S, p.S393L) were identified in four patients with typical PD and in two individuals with atypical parkinsonism (1 CBS and 1 PSP). None of the detected mutations were found in healthy controls and only the variant p.N267S was previously described in association to idiopathic familial and sporadic PD and to CBS. Conclusion: In this study we provide further insight into the clinical phenotypic heterogeneity associated with TARDBP mutations, which expands beyond the classical ALS and FTD diseases to include also PD and atypical parkinsonism, although with a low mutational frequency, varying considerably in different Caucasian populations. In addition, our study extends the spectrum of TARDBP pathogenetic mutations found in familial and sporadic PD.