Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2788, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555356

RESUMEN

Hospital-acquired pneumonia (HAP) is associated with high mortality and costs, and frequently caused by multidrug-resistant (MDR) bacteria. Although prior antimicrobial therapy is a major risk factor for HAP, the underlying mechanism remains incompletely understood. Here, we demonstrate that antibiotic therapy in hospitalized patients is associated with decreased diversity of the gut microbiome and depletion of short-chain fatty acid (SCFA) producers. Infection experiments with mice transplanted with patient fecal material reveal that these antibiotic-induced microbiota perturbations impair pulmonary defense against MDR Klebsiella pneumoniae. This is dependent on inflammatory monocytes (IMs), whose fatty acid receptor (FFAR)2/3-controlled and phagolysosome-dependent antibacterial activity is compromized in mice transplanted with antibiotic-associated patient microbiota. Collectively, we characterize how clinically relevant antibiotics affect antimicrobial defense in the context of human microbiota, and reveal a critical impairment of IM´s antimicrobial activity. Our study provides additional arguments for the rational use of antibiotics and offers mechanistic insights for the development of novel prophylactic strategies to protect high-risk patients from HAP.


Asunto(s)
Antibacterianos , Antiinfecciosos , Humanos , Ratones , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Monocitos , Antiinfecciosos/farmacología , Klebsiella pneumoniae , Pulmón
2.
Gastroenterology ; 161(2): 623-636.e16, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33957136

RESUMEN

BACKGROUND & AIMS: The homeostasis of the gastrointestinal epithelium relies on cell regeneration and differentiation into distinct lineages organized inside glands and crypts. Regeneration depends on Wnt/ß-catenin pathway activation, but to understand homeostasis and its dysregulation in disease, we need to identify the signaling microenvironment governing cell differentiation. By using gastric glands as a model, we have identified the signals inducing differentiation of surface mucus-, zymogen-, and gastric acid-producing cells. METHODS: We generated mucosoid cultures from the human stomach and exposed them to different growth factors to obtain cells with features of differentiated foveolar, chief, and parietal cells. We localized the source of the growth factors in the tissue of origin. RESULTS: We show that epidermal growth factor is the major fate determinant distinguishing the surface and inner part of human gastric glands. In combination with bone morphogenetic factor/Noggin signals, epidermal growth factor controls the differentiation of foveolar cells vs parietal or chief cells. We also show that epidermal growth factor is likely to underlie alteration of the gastric mucosa in the precancerous condition atrophic gastritis. CONCLUSIONS: Use of our recently established mucosoid cultures in combination with analysis of the tissue of origin provided a robust strategy to understand differentiation and patterning of human tissue and allowed us to draw a new, detailed map of the signaling microenvironment in the human gastric glands.


Asunto(s)
Tipificación del Cuerpo/efectos de los fármacos , Proteína Morfogenética Ósea 4/farmacología , Diferenciación Celular/efectos de los fármacos , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/efectos de los fármacos , Mucosa Gástrica/efectos de los fármacos , Proteínas Portadoras/farmacología , Linaje de la Célula , Células Cultivadas , Microambiente Celular , Células Principales Gástricas/efectos de los fármacos , Células Principales Gástricas/metabolismo , Células Principales Gástricas/ultraestructura , Células Epiteliales/metabolismo , Células Epiteliales/ultraestructura , Mucosa Gástrica/metabolismo , Mucosa Gástrica/ultraestructura , Gastritis Atrófica/metabolismo , Gastritis Atrófica/patología , Regulación del Desarrollo de la Expresión Génica , Humanos , Organoides , Células Parietales Gástricas/efectos de los fármacos , Células Parietales Gástricas/metabolismo , Células Parietales Gástricas/ultraestructura , Vía de Señalización Wnt
3.
Nat Commun ; 11(1): 5117, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-33037203

RESUMEN

Exposure of gastric epithelial cells to the bacterial carcinogen Helicobacter pylori causes DNA double strand breaks. Here, we show that H. pylori-induced DNA damage occurs co-transcriptionally in S-phase cells that activate NF-κB signaling upon innate immune recognition of the lipopolysaccharide biosynthetic intermediate ß-ADP-heptose by the ALPK1/TIFA signaling pathway. DNA damage depends on the bi-functional RfaE enzyme and the Cag pathogenicity island of H. pylori, is accompanied by replication fork stalling and can be observed also in primary cells derived from gastric organoids. Importantly, H. pylori-induced replication stress and DNA damage depend on the presence of co-transcriptional RNA/DNA hybrids (R-loops) that form in infected cells during S-phase as a consequence of ß-ADP-heptose/ ALPK1/TIFA/NF-κB signaling. H. pylori resides in close proximity to S-phase cells in the gastric mucosa of gastritis patients. Taken together, our results link bacterial infection and NF-κB-driven innate immune responses to R-loop-dependent replication stress and DNA damage.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Helicobacter pylori/patogenicidad , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Bacterianas/metabolismo , Línea Celular Tumoral , ADN/química , ADN/genética , Daño del ADN , Replicación del ADN/efectos de los fármacos , Floxuridina , Glicosiltransferasas/metabolismo , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Lipopolisacáridos/metabolismo , Mutación , FN-kappa B/genética , Proteínas Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
4.
FASEB J ; 33(8): 9087-9099, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31075211

RESUMEN

The gastric pathogen Helicobacter pylori activates the NF-κB pathway in human epithelial cells via the recently discovered α-kinase 1 TRAF-interacting protein with forkhead-associated domain (TIFA) axis. We and others showed that this pathway can be triggered by heptose 1,7-bisphosphate (HBP), an LPS intermediate produced in gram-negative bacteria that represents a new pathogen-associated molecular pattern (PAMP). Here, we report that our attempts to identify HBP in lysates of H. pylori revealed surprisingly low amounts, failing to explain NF-κB activation. Instead, we identified ADP-glycero-ß-D-manno-heptose (ADP heptose), a derivative of HBP, as the predominant PAMP in lysates of H. pylori and other gram-negative bacteria. ADP heptose exhibits significantly higher activity than HBP, and cells specifically sensed the presence of the ß-form, even when the compound was added extracellularly. The data lead us to conclude that ADP heptose not only constitutes the key PAMP responsible for H. pylori-induced NF-κB activation in epithelial cells, but it acts as a general gram-negative bacterial PAMP.-Pfannkuch, L., Hurwitz, R., Traulsen, J., Sigulla, J., Poeschke, M., Matzner, L., Kosma, P., Schmid, M., Meyer, T. F. ADP heptose, a novel pathogen-associated molecular pattern identified in Helicobacter pylori.


Asunto(s)
Azúcares de Adenosina Difosfato/metabolismo , Helicobacter pylori/metabolismo , Heptosas/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Azúcares de Adenosina Difosfato/química , Azúcares de Adenosina Difosfato/inmunología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Células Epiteliales/inmunología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Eliminación de Gen , Genes Bacterianos , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/inmunología , Heptosas/química , Heptosas/inmunología , Humanos , Inmunidad Innata , FN-kappa B/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/química , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Transducción de Señal , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Espectrometría de Masas en Tándem
5.
Gastroenterology ; 154(5): 1391-1404.e9, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29273450

RESUMEN

BACKGROUND & AIMS: Despite inducing an inflammatory response, Helicobacter pylori can persist in the gastric mucosa for decades. H pylori expression of cholesterol-α-glucosyltransferase (encoded by cgt) is required for gastric colonization and T-cell activation. We investigated how cgt affects gastric epithelial cells and the host immune response. METHODS: MKN45 gastric epithelial cells, AGS cells, and human primary gastric epithelial cells (obtained from patients undergoing gastrectomy or sleeve resection or gastric antral organoids) were incubated with interferon gamma (IFNG) or interferon beta (IFNB) and exposed to H pylori, including cagPAI and cgt mutant strains. Some cells were incubated with methyl-ß-cyclodextrin (to deplete cholesterol from membranes) or myriocin and zaragozic acid to prevent biosynthesis of sphingolipids and cholesterol and analyzed by immunoblot, immunofluorescence, and reverse transcription quantitative polymerase chain reaction analyses. We compared gene expression patterns among primary human gastric cells, uninfected or infected with H pylori P12 wt or P12Δcgt, using microarray analysis. Mice with disruption of the IFNG receptor 1 (Ifngr1-/- mice) and C57BL6 (control) mice were infected with PMSS1 (wild-type) or PMSS1Δcgt H pylori; gastric tissues were collected and analyzed by reverse transcription quantitative polymerase chain reaction or confocal microscopy. RESULTS: In primary gastric cells and cell lines, infection with H pylori, but not cgt mutants, blocked IFNG-induced signaling via JAK and STAT. Cells infected with H pylori were depleted of cholesterol, which reduced IFNG signaling by disrupting lipid rafts, leading to reduced phosphorylation (activation) of JAK and STAT1. H pylori infection of cells also blocked signaling by IFNB, interleukin 6 (IL6), and IL22 and reduced activation of genes regulated by these signaling pathways, including cytokines that regulate T-cell function (MIG and IP10) and anti-microbial peptides such as human ß-defensin 3 (hBD3). We found that this mechanism allows H pylori to persist in proximity to infected cells while inducing inflammation only in the neighboring, non-infected epithelium. Stomach tissues from mice infected with PMSS1 had increased levels of IFNG, but did not express higher levels of interferon-response genes. Expression of the IFNG-response gene IRF1 was substantially higher in PMSS1Δcgt-infected mice than PMSS1-infected mice. Ifngr1-/- mice were colonized by PMSS1 to a greater extent than control mice. CONCLUSIONS: H pylori expression of cgt reduces cholesterol levels in infected gastric epithelial cells and thereby blocks IFNG signaling, allowing the bacteria to escape the host inflammatory response. These findings provide insight into the mechanisms by which H pylori might promote gastric carcinogenesis (persisting despite constant inflammation) and ineffectiveness of T-cell-based vaccines against H pylori.


Asunto(s)
Colesterol/metabolismo , Células Epiteliales/metabolismo , Mucosa Gástrica/metabolismo , Gastritis/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Interferón gamma/metabolismo , Transducción de Señal , Animales , Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Línea Celular , Microambiente Celular , Modelos Animales de Enfermedad , Células Epiteliales/inmunología , Células Epiteliales/microbiología , Mucosa Gástrica/inmunología , Mucosa Gástrica/microbiología , Gastritis/genética , Gastritis/inmunología , Gastritis/microbiología , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Helicobacter pylori/inmunología , Helicobacter pylori/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Interferón gamma/inmunología , Interleucina-6/metabolismo , Interleucinas/metabolismo , Quinasas Janus/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Viabilidad Microbiana , Mutación , Cultivo Primario de Células , Receptores de Interferón/deficiencia , Receptores de Interferón/genética , Factor de Transcripción STAT1/metabolismo , Factores de Tiempo , Receptor de Interferón gamma , Interleucina-22
6.
Cell Rep ; 20(10): 2384-2395, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28877472

RESUMEN

Activation of transcription factor NF-κB is a hallmark of infection with the gastric pathogen Helicobacter pylori, associated with inflammation and carcinogenesis. Genome-wide RNAi screening revealed numerous host factors involved in H. pylori-, but not IL-1ß- and TNF-α-dependent NF-κB regulation. Pathway analysis including CRISPR/Cas9-knockout and recombinant protein technology, immunofluorescence microscopy, immunoblotting, mass spectrometry, and mutant H. pylori strains identified the H. pylori metabolite D-glycero-ß-D-manno-heptose 1,7-bisphosphate (ßHBP) as a cagPAI type IV secretion system (T4SS)-dependent effector of NF-κB activation in infected cells. Upon pathogen-host cell contact, TIFA forms large complexes (TIFAsomes) including interacting host factors, such as TRAF2. NF-κB activation, TIFA phosphorylation, and TIFAsome formation depend on a functional ALPK1 kinase, highlighting the ALPK1-TIFA axis as a core innate immune pathway. ALPK1-TIFA-mediated NF-κB activation was independent of CagA protein translocation, indicating that CagA translocation and HBP delivery to host cells are distinct features of the pathogen's T4SS.


Asunto(s)
Transducción de Señal/fisiología , Sistemas de Secreción Tipo IV/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/inmunología , Helicobacter pylori/patogenicidad , Humanos , Inmunidad Innata/genética , Inmunidad Innata/fisiología , Microscopía Fluorescente , FN-kappa B/metabolismo , Moléculas de Patrón Molecular Asociado a Patógenos/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Interferencia de ARN , Transducción de Señal/genética , Factor de Necrosis Tumoral alfa/metabolismo , Sistemas de Secreción Tipo IV/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA