Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(32): e2402206121, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39088390

RESUMEN

Activating leucine-rich repeat kinase 2 (LRRK2) mutations cause Parkinson's and phosphorylation of Rab10 by pathogenic LRRK2 blocks primary ciliogenesis in cultured cells. In the mouse brain, LRRK2 blockade of primary cilia is highly cell type specific: For example, cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2-pathway mutant mice. We show here that the cell type specificity of LRRK2-mediated cilia loss is also seen in human postmortem striatum from patients with LRRK2 pathway mutations and idiopathic Parkinson's. Single nucleus RNA sequencing shows that cilia loss in mouse cholinergic interneurons is accompanied by decreased glial-derived neurotrophic factor transcription, decreasing neuroprotection for dopamine neurons. Nevertheless, LRRK2 expression differences cannot explain the unique vulnerability of cholinergic neurons to LRRK2 kinase as much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's.


Asunto(s)
Cilios , Neuronas Dopaminérgicas , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Neuroprotección , Enfermedad de Parkinson , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Cilios/metabolismo , Animales , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Humanos , Ratones , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Neuroprotección/genética , Mutación , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Masculino
2.
Annu Rev Biochem ; 93(1): 261-287, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38621236

RESUMEN

Activating mutations in leucine-rich repeat kinase 2 (LRRK2) represent the most common cause of monogenic Parkinson's disease. LRRK2 is a large multidomain protein kinase that phosphorylates a specific subset of the ∼65 human Rab GTPases, which are master regulators of the secretory and endocytic pathways. After phosphorylation by LRRK2, Rabs lose the capacity to bind cognate effector proteins and guanine nucleotide exchange factors. Moreover, the phosphorylated Rabs cannot interact with their cognate prenyl-binding retrieval proteins (also known as guanine nucleotide dissociation inhibitors) and, thus, they become trapped on membrane surfaces. Instead, they gain the capacity to bind phospho-Rab-specific effector proteins, such as RILPL1, with resulting pathological consequences. Rab proteins also act upstream of LRRK2 by controlling its activation and recruitment onto membranes. LRRK2 signaling is counteracted by the phosphoprotein phosphatase PPM1H, which selectively dephosphorylates phospho-Rab proteins. We present here our current understanding of the structure, biochemical properties, and cell biology of LRRK2 and its related paralog LRRK1 and discuss how this information guides the generation of LRRK2 inhibitors for the potential benefit of patients.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Proteínas de Unión al GTP rab , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/química , Fosforilación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/patología , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/química , Animales , Transducción de Señal , Mutación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/química , Unión Proteica , Fosfoproteínas Fosfatasas/metabolismo , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/química
3.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293195

RESUMEN

Activating LRRK2 mutations cause Parkinson's disease. Previously, we showed that cholinergic interneurons and astrocytes but not medium spiny neurons of the dorsal striatum lose primary cilia in LRRK2 mutant mice. Single nucleus RNA sequencing shows that cilia loss in cholinergic interneurons correlates with higher LRRK2 expression and decreased glial derived neurotrophic factor transcription. Nevertheless, much higher LRRK2 expression is seen in medium spiny neurons that have normal cilia in mice and humans. In parallel with decreased striatal dopaminergic neurite density, LRRK2 G2019S neurons show increased autism-linked CNTN5 adhesion protein expression; glial cells show significant loss of ferritin heavy chain. Human striatal tissue from LRRK2 pathway mutation carriers and idiopathic Parkinson's disease show similar cilia loss in cholinergic interneurons and astrocytes and overall loss of such neurons. These data strongly suggest that loss of cilia in specific striatal cell types decreases neuroprotection for dopamine neurons in mice and human Parkinson's disease.

4.
Sci Adv ; 9(50): eadj1205, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38091401

RESUMEN

We demonstrate that the Parkinson's VPS35[D620N] mutation alters the expression of ~220 lysosomal proteins and stimulates recruitment and phosphorylation of Rab proteins at the lysosome. This recruits the phospho-Rab effector protein RILPL1 to the lysosome where it binds to the lysosomal integral membrane protein TMEM55B. We identify highly conserved regions of RILPL1 and TMEM55B that interact and design mutations that block binding. In mouse fibroblasts, brain, and lung, we demonstrate that the VPS35[D620N] mutation reduces RILPL1 levels, in a manner reversed by LRRK2 inhibition and proteasome inhibitors. Knockout of RILPL1 enhances phosphorylation of Rab substrates, and knockout of TMEM55B increases RILPL1 levels. The lysosomotropic agent LLOMe also induced LRRK2 kinase-mediated association of RILPL1 to the lysosome, but to a lower extent than the D620N mutation. Our study uncovers a pathway through which dysfunctional lysosomes resulting from the VPS35[D620N] mutation recruit and activate LRRK2 on the lysosomal surface, driving assembly of the RILPL1-TMEM55B complex.


Asunto(s)
Enfermedad de Parkinson , Animales , Ratones , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Ratones Noqueados , Mutación , Lisosomas/metabolismo , Proteínas de Membrana de los Lisosomas
5.
Proc Natl Acad Sci U S A ; 120(44): e2315171120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37889931

RESUMEN

PPM1H phosphatase reverses Parkinson's disease-associated, Leucine Rich Repeat Kinase 2-mediated Rab GTPase phosphorylation. We show here that PPM1H relies on an N-terminal amphipathic helix for Golgi localization. The amphipathic helix enables PPM1H to bind to liposomes in vitro, and small, highly curved liposomes stimulate PPM1H activity. We artificially anchored PPM1H to the Golgi, mitochondria, or mother centriole. Our data show that regulation of Rab10 GTPase phosphorylation requires PPM1H access to Rab10 at or near the mother centriole. Moreover, poor colocalization of Rab12 explains in part why it is a poor substrate for PPM1H in cells but not in vitro. These data support a model in which localization drives PPM1H substrate selection and centriolar PPM1H is critical for regulation of Rab GTPase-regulated ciliogenesis. Moreover, Golgi localized PPM1H may maintain active Rab GTPases on the Golgi to carry out their nonciliogenesis-related functions in membrane trafficking.


Asunto(s)
Enfermedad de Parkinson , Monoéster Fosfórico Hidrolasas , Humanos , Fosforilación , Monoéster Fosfórico Hidrolasas/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Liposomas , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Fosfoproteínas Fosfatasas/metabolismo
6.
Elife ; 122023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37874635

RESUMEN

Activating mutations in the leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases, particularly Rab10 and Rab8A, and we showed previously that these phosphoRabs play an important role in LRRK2 membrane recruitment and activation (Vides et al., 2022). To learn more about LRRK2 pathway regulation, we carried out an unbiased, CRISPR-based genome-wide screen to identify modifiers of cellular phosphoRab10 levels. A flow cytometry assay was developed to detect changes in phosphoRab10 levels in pools of mouse NIH-3T3 cells harboring unique CRISPR guide sequences. Multiple negative and positive regulators were identified; surprisingly, knockout of the Rab12 gene was especially effective in decreasing phosphoRab10 levels in multiple cell types and knockout mouse tissues. Rab-driven increases in phosphoRab10 were specific for Rab12, LRRK2-dependent and PPM1H phosphatase-reversible, and did not require Rab12 phosphorylation; they were seen with wild type and pathogenic G2019S and R1441C LRRK2. As expected for a protein that regulates LRRK2 activity, Rab12 also influenced primary cilia formation. AlphaFold modeling revealed a novel Rab12 binding site in the LRRK2 Armadillo domain, and we show that residues predicted to be essential for Rab12 interaction at this site influence phosphoRab10 and phosphoRab12 levels in a manner distinct from Rab29 activation of LRRK2. Our data show that Rab12 binding to a new site in the LRRK2 Armadillo domain activates LRRK2 kinase for Rab phosphorylation and could serve as a new therapeutic target for a novel class of LRRK2 inhibitors that do not target the kinase domain.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Enfermedad de Parkinson , Proteínas de Unión al GTP rab , Animales , Ratones , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosforilación , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
7.
FEBS Lett ; 597(6): 811-818, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36114007

RESUMEN

Rab GTPases comprise a large family of conserved GTPases that are critical regulators of the secretory and endocytic pathways. The human genome encodes ~ 65 Rabs that localize to discrete membrane compartments and, when in their GTP-bound state, bind to effector proteins to carry out diverse functions. Activating mutations in LRRK2 kinase cause Parkinson's disease, and subsets of Rab GTPases are important LRRK2 substrates. LRRK2 phosphorylates a conserved threonine residue that is essential for Rab interaction with guanine nucleotide exchange factors, effectors, and GDI that recycles Rabs between membrane compartments. This brief review will highlight new findings related to LRRK2-mediated phosphorylation of Rab GTPases and its consequences. Remarkably, Rab phosphorylation flips a switch on Rab effector selection with dominant consequences for cell pathophysiology.


Asunto(s)
Enfermedad de Parkinson , Proteínas de Unión al GTP rab , Humanos , Fosforilación , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Transporte Biológico , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo
8.
Elife ; 112022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149401

RESUMEN

Activating mutations in the leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease, and previously we showed that activated LRRK2 phosphorylates a subset of Rab GTPases (Steger et al., 2017). Moreover, Golgi-associated Rab29 can recruit LRRK2 to the surface of the Golgi and activate it there for both auto- and Rab substrate phosphorylation. Here, we define the precise Rab29 binding region of the LRRK2 Armadillo domain between residues 360-450 and show that this domain, termed 'site #1,' can also bind additional LRRK2 substrates, Rab8A and Rab10. Moreover, we identify a distinct, N-terminal, higher-affinity interaction interface between LRRK2 phosphorylated Rab8 and Rab10 termed 'site #2' that can retain LRRK2 on membranes in cells to catalyze multiple, subsequent phosphorylation events. Kinase inhibitor washout experiments demonstrate that rapid recovery of kinase activity in cells depends on the ability of LRRK2 to associate with phosphorylated Rab proteins, and phosphorylated Rab8A stimulates LRRK2 phosphorylation of Rab10 in vitro. Reconstitution of purified LRRK2 recruitment onto planar lipid bilayers decorated with Rab10 protein demonstrates cooperative association of only active LRRK2 with phospho-Rab10-containing membrane surfaces. These experiments reveal a feed-forward pathway that provides spatial control and membrane activation of LRRK2 kinase activity.


Asunto(s)
Membrana Dobles de Lípidos , Proteínas de Unión al GTP rab , Leucina/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Fosforilación , Proteínas de Unión al GTP rab/metabolismo
9.
J Cell Biol ; 221(2)2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34936700

RESUMEN

We report here two genome-wide CRISPR screens performed to identify genes that, when knocked out, alter levels of lysosomal cholesterol or bis(monoacylglycero)phosphate. In addition, these screens were also performed under conditions of NPC1 inhibition to identify modifiers of NPC1 function in lysosomal cholesterol export. The screens confirm tight coregulation of cholesterol and bis(monoacylglycero)phosphate in cells and reveal an unexpected role for the ER-localized SNX13 protein as a negative regulator of lysosomal cholesterol export and contributor to ER-lysosome membrane contact sites. In the absence of NPC1 function, SNX13 knockdown redistributes lysosomal cholesterol and is accompanied by triacylglycerol-rich lipid droplet accumulation and increased lysosomal bis(monoacylglycero)phosphate. These experiments provide unexpected insight into the regulation of lysosomal lipids and modification of these processes by novel gene products.


Asunto(s)
Sistemas CRISPR-Cas/genética , Colesterol/metabolismo , Retículo Endoplásmico/metabolismo , Pruebas Genéticas , Lípidos/química , Lisosomas/metabolismo , Transporte Biológico , Endosomas/metabolismo , Genoma , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Células K562 , Dominios Proteicos , Nexinas de Clasificación/química , Nexinas de Clasificación/metabolismo
10.
Elife ; 102021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34658337

RESUMEN

Activating LRRK2 mutations cause Parkinson's disease, and pathogenic LRRK2 kinase interferes with ciliogenesis. Previously, we showed that cholinergic interneurons of the dorsal striatum lose their cilia in R1441C LRRK2 mutant mice (Dhekne et al., 2018). Here, we show that cilia loss is seen as early as 10 weeks of age in these mice and also in two other mouse strains carrying the most common human G2019S LRRK2 mutation. Loss of the PPM1H phosphatase that is specific for LRRK2-phosphorylated Rab GTPases yields the same cilia loss phenotype seen in mice expressing pathogenic LRRK2 kinase, strongly supporting a connection between Rab GTPase phosphorylation and cilia loss. Moreover, astrocytes throughout the striatum show a ciliation defect in all LRRK2 and PPM1H mutant models examined. Hedgehog signaling requires cilia, and loss of cilia in LRRK2 mutant rodents correlates with dysregulation of Hedgehog signaling as monitored by in situ hybridization of Gli1 and Gdnf transcripts. Dopaminergic neurons of the substantia nigra secrete a Hedgehog signal that is sensed in the striatum to trigger neuroprotection; our data support a model in which LRRK2 and PPM1H mutant mice show altered responses to critical Hedgehog signals in the nigrostriatal pathway.


Asunto(s)
Astrocitos/fisiología , Cilios/fisiología , Proteínas Hedgehog/fisiología , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Neuronas/fisiología , Transducción de Señal , Animales , Encéfalo , Femenino , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Masculino , Ratones
11.
Methods Mol Biol ; 2293: 19-25, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34453707

RESUMEN

Rab29 has been implicated in multiple membrane trafficking processes with no described effectors or regulating proteins. Its fast nucleotide exchange rate and inability to bind GDI in cytosol make it a unique and poorly understood Rab. Because the conventional, "GTP-locked" Rab mutation does not have the desired effect in Rab29, we present here the use of a fluorescence-based assay to characterize novel Rab29 mutants (I64T and V156G) that display faster nucleotide exchange rates, allowing for GEF-independent Rab29 activation.


Asunto(s)
Proteínas de Unión al GTP rab/metabolismo , Citosol/metabolismo , Mutación , Nucleótidos , Proteínas de Unión al GTP rab/genética
12.
Life Sci Alliance ; 4(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33727250

RESUMEN

Activating mutations in LRRK2 kinase causes Parkinson's disease. Pathogenic LRRK2 phosphorylates a subset of Rab GTPases and blocks ciliogenesis. Thus, defining novel phospho-Rab interacting partners is critical to our understanding of the molecular basis of LRRK2 pathogenesis. RILPL2 binds with strong preference to LRRK2-phosphorylated Rab8A and Rab10. RILPL2 is a binding partner of the motor protein and Rab effector, Myosin Va. We show here that the globular tail domain of Myosin Va also contains a high affinity binding site for LRRK2-phosphorylated Rab10. In the presence of pathogenic LRRK2, RILPL2 and MyoVa relocalize to the peri-centriolar region in a phosphoRab10-dependent manner. PhosphoRab10 retains Myosin Va over pericentriolar membranes as determined by fluorescence loss in photobleaching microscopy. Without pathogenic LRRK2, RILPL2 is not essential for ciliogenesis but RILPL2 over-expression blocks ciliogenesis in RPE cells independent of tau tubulin kinase recruitment to the mother centriole. These experiments show that LRRK2 generated-phosphoRab10 dramatically redistributes a significant fraction of Myosin Va and RILPL2 to the mother centriole in a manner that likely interferes with Myosin Va's role in ciliogenesis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cilios/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Sitios de Unión/genética , Línea Celular , Cilios/fisiología , Células HEK293 , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Cadenas Pesadas de Miosina/genética , Miosina Tipo V/genética , Fosforilación , Unión Proteica/genética , Proteínas de Unión al GTP rab/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33653948

RESUMEN

Mutations that activate LRRK2 protein kinase cause Parkinson's disease. We showed previously that Rab10 phosphorylation by LRRK2 enhances its binding to RILPL1, and together, these proteins block cilia formation in a variety of cell types, including patient derived iPS cells. We have used live-cell fluorescence microscopy to identify, more precisely, the effect of LRRK2 kinase activity on both the formation of cilia triggered by serum starvation and the loss of cilia seen upon serum readdition. LRRK2 activity decreases the overall probability of ciliation without changing the rates of cilia formation in R1441C LRRK2 MEF cells. Cilia loss in these cells is accompanied by ciliary decapitation, and kinase activity does not change the timing or frequency of decapitation or the rate of cilia loss but increases the percent of cilia that are lost upon serum addition. LRRK2 activity, or overexpression of RILPL1 protein, blocks release of CP110 from the mother centriole, a step normally required for early ciliogenesis; LRRK2 blockade of CP110 uncapping requires Rab10 and RILPL1 proteins and is due to failure to recruit TTBK2, a kinase needed for CP110 release. In contrast, deciliation probability does not change in cells lacking Rab10 or RILPL1 and relies on a distinct LRRK2 pathway. These experiments provide critical detail to our understanding of the cellular consequences of pathogenic LRRK2 mutation and indicate that LRRK2 blocks ciliogenesis upstream of TTBK2 and enhances the deciliation process in response to serum addition.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Cilios/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Sustitución de Aminoácidos , Animales , Cilios/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Ratones , Ratones Transgénicos , Mutación Missense , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Unión al GTP rab/genética
14.
Elife ; 92020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32410728

RESUMEN

Transport of LDL-derived cholesterol from lysosomes into the cytoplasm requires NPC1 protein; NPC1L1 mediates uptake of dietary cholesterol. We introduced single disulfide bonds into NPC1 and NPC1L1 to explore the importance of inter-domain dynamics in cholesterol transport. Using a sensitive method to monitor lysosomal cholesterol efflux, we found that NPC1's N-terminal domain need not release from the rest of the protein for efficient cholesterol export. Either introducing single disulfide bonds to constrain lumenal/extracellular domains or shortening a cytoplasmic loop abolishes transport activity by both NPC1 and NPC1L1. The widely prescribed cholesterol uptake inhibitor, ezetimibe, blocks NPC1L1; we show that residues that lie at the interface between NPC1L1's three extracellular domains comprise the drug's binding site. These data support a model in which cholesterol passes through the cores of NPC1/NPC1L1 proteins; concerted movement of various domains is needed for transfer and ezetimibe blocks transport by binding to multiple domains simultaneously.


Asunto(s)
Colesterol/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteína Niemann-Pick C1/metabolismo , Animales , Anticolesterolemiantes/farmacología , Transporte Biológico , Ezetimiba/farmacología , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/genética , Lisosomas/efectos de los fármacos , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/efectos de los fármacos , Proteínas de Transporte de Membrana/genética , Simulación de Dinámica Molecular , Proteína Niemann-Pick C1/química , Proteína Niemann-Pick C1/genética , Dominios Proteicos , Células Sf9 , Relación Estructura-Actividad
15.
Elife ; 82019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31663853

RESUMEN

Mutations that activate LRRK2 protein kinase cause Parkinson's disease. LRRK2 phosphorylates a subset of Rab GTPases within their Switch-II motif controlling interaction with effectors. An siRNA screen of all human protein phosphatases revealed that a poorly studied protein phosphatase, PPM1H, counteracts LRRK2 signaling by specifically dephosphorylating Rab proteins. PPM1H knockout increased endogenous Rab phosphorylation and inhibited Rab dephosphorylation in human A549 cells. Overexpression of PPM1H suppressed LRRK2-mediated Rab phosphorylation. PPM1H also efficiently and directly dephosphorylated Rab8A in biochemical studies. A "substrate-trapping" PPM1H mutant (Asp288Ala) binds with high affinity to endogenous, LRRK2-phosphorylated Rab proteins, thereby blocking dephosphorylation seen upon addition of LRRK2 inhibitors. PPM1H is localized to the Golgi and its knockdown suppresses primary cilia formation, similar to pathogenic LRRK2. Thus, PPM1H acts as a key modulator of LRRK2 signaling by controlling dephosphorylation of Rab proteins. PPM1H activity enhancers could offer a new therapeutic approach to prevent or treat Parkinson's disease.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Fosfoproteínas Fosfatasas/metabolismo , Transducción de Señal , Proteínas de Unión al GTP rab/metabolismo , Humanos , Fosforilación , ARN Interferente Pequeño/genética , Proteínas de Unión al GTP rab/genética
16.
J Cell Biol ; 218(12): 4157-4170, 2019 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-31624137

RESUMEN

LRRK2 kinase mutations cause familial Parkinson's disease and increased phosphorylation of a subset of Rab GTPases. Rab29 recruits LRRK2 to the trans-Golgi and activates it there, yet some of LRRK2's major Rab substrates are not on the Golgi. We sought to characterize the cell biology of LRRK2 activation. Unlike other Rab family members, we show that Rab29 binds nucleotide weakly, is poorly prenylated, and is not bound to GDI in the cytosol; nevertheless, Rab29 only activates LRRK2 when it is membrane bound and GTP bound. Mitochondrially anchored, GTP-bound Rab29 is both a LRRK2 substrate and activator, and it drives accumulation of active LRRK2 and phosphorylated Rab10 on mitochondria. Importantly, mitochondrially anchored LRRK2 is much less capable of phosphorylating plasma membrane-anchored Rab10 than soluble LRRK2. These data support a model in which LRRK2 associates with and dissociates from distinct membrane compartments to phosphorylate Rab substrates; if anchored, LRRK2 can modify misdelivered Rab substrates that then become trapped there because GDI cannot retrieve them.


Asunto(s)
Membrana Celular/metabolismo , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Células A549 , Citosol/metabolismo , Células HEK293 , Células HeLa , Humanos , Mitocondrias/metabolismo , Fosforilación , Red trans-Golgi/metabolismo
17.
J Biol Chem ; 294(5): 1706-1709, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30710017

RESUMEN

Low-density lipoprotein particles are taken up by cells and delivered to the lysosome where their cholesterol esters are cleaved off by acid lipase. The released, free cholesterol is then exported from lysosomes for cellular needs or storage. This article summarizes recent advances in our understanding of the molecular basis of cholesterol export from lysosomes. Cholesterol export requires NPC intracellular cholesterol transporter 1 (NPC1) and NPC2, genetic mutations of which can cause Niemann-Pick type C disease, a disorder characterized by massive lysosomal accumulation of cholesterol and glycosphingolipids. Analysis of the NPC1 and NPC2 structures and biochemical properties, together with new structures of the related Patched (PTCH) protein, provides new clues to the mechanisms by which NPC proteins may function.


Asunto(s)
Proteínas Portadoras/metabolismo , Colesterol/metabolismo , Lisosomas/metabolismo , Glicoproteínas de Membrana/metabolismo , Transporte Biológico , Proteínas Portadoras/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/genética , Mutación , Proteína Niemann-Pick C1 , Enfermedad de Niemann-Pick Tipo C/fisiopatología
19.
Elife ; 72018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30556811

RESUMEN

Extracellular vesicles mediate transfer of biologically active molecules between neighboring or distant cells, and these vesicles may play important roles in normal physiology and the pathogenesis of multiple disease states including cancer. However, the underlying molecular mechanisms of their biogenesis and release remain unknown. We designed artificially barcoded, exosomal microRNAs (bEXOmiRs) to monitor extracellular vesicle release quantitatively using deep sequencing. We then expressed distinct pairs of CRISPR guide RNAs and bEXOmiRs, enabling identification of genes influencing bEXOmiR secretion from Cas9-edited cells. This approach uncovered genes with unrecognized roles in multivesicular endosome exocytosis, including critical roles for Wnt signaling in extracellular vesicle release regulation. Coupling bEXOmiR reporter analysis with CRISPR-Cas9 screening provides a powerful and unbiased means to study extracellular vesicle biology and for the first time, to associate a nucleic acid tag with individual membrane vesicles.


Asunto(s)
Vesículas Extracelulares/genética , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/genética , Células A549 , Secuencia de Bases , Sistemas CRISPR-Cas , Endosomas/metabolismo , Exocitosis , Exosomas/genética , Redes Reguladoras de Genes , Células HEK293 , Células HeLa , Humanos , Cuerpos Multivesiculares/metabolismo
20.
Biochem Soc Trans ; 46(6): 1707-1712, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30467121

RESUMEN

Leucine-rich repeat kinase 2 (LRRK2) is mutated in familial Parkinson's disease, and pathogenic mutations activate the kinase activity. A tour de force screen by Mann and Alessi and co-workers identified a subset of Rab GTPases as bona fide LRRK2 substrates. Rab GTPases are master regulators of membrane trafficking and this short review will summarize what we know about the connection between LRRK2 and this family of regulatory proteins. While, in most cases, Rab GTPase phosphorylation is predicted to interfere with Rab protein function, the discovery of proteins that show preferential binding to phosphorylated Rabs suggests that more complex interactions may also contribute to mutant LRRK2-mediated pathology.


Asunto(s)
Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Proteínas de Unión al GTP rab/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...