Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 10(11)2020 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-33182734

RESUMEN

This study concentrates on several factors which govern the nanoscale plasticity of in situ compressed dislocation-free Ni3Al nanocubes: cube size, aspect ratio and the presence of grooves. The yield strength of dislocation-free Ni3Al nanocubes exhibits an apparent size dependence. The size dependence is strong when cubes are smaller than 300 nm. Compared with the strength of bulk Ni3Al single crystals, the strength of nanocubes is two orders of magnitude higher, which clearly demonstrates that there is a size effect. Nanocube plasticity strongly depends on the alignment and the shape of the cubes. Deformed aligned nanocubes either display only a few localized deformation events (slip lines) or were homogenously compressed into flats due to multiple slip dislocation-mediated plasticity. For an aligned cube, crack initiation at the intersection of a slip line with a groove in the cube surface was observed. In case of a double cube, crack initiation occurs at surface irregularities, while subsequent crack propagation occurs along one or more slip planes.

2.
Materials (Basel) ; 13(9)2020 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-32370218

RESUMEN

Multiple principal element alloys, also often referred to as compositionally complex alloys or high entropy alloys, present extreme challenges to characterize. They show a vast, multidimensional composition space that merits detailed investigation and optimization to identify compositions and to map the composition ranges where useful properties are maintained. Combinatorial thin film material libraries are a cost-effective and efficient way to create directly comparable, controlled composition variations. Characterizing them comes with its own challenges, including the need for high-speed, automated measurements of dozens to hundreds or more compositions to be screened. By selecting an appropriate thin film morphology through predictable control of critical deposition parameters, representative measured values can be obtained with less scatter, i.e., requiring fewer measurement repetitions for each particular composition. In the present study, equiatomic CoCrFeNi was grown by magnetron sputtering in different locations in the structure zone diagram applied to multinary element alloys, followed by microstructural and morphological characterizations. Increasing the energy input to the deposition process by increased temperature and adding high-power impulse magnetron sputtering (HiPIMS) plasma generators led to denser, more homogeneous morphologies with smoother surfaces until recrystallization and grain boundary grooving began. Growth at 300 °C, even without the extra particle energy input of HiPIMS generators, led to consistently repeatable nanoindentation load-displacement curves and the resulting hardness and Young's modulus values.

3.
ACS Comb Sci ; 22(5): 232-247, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32289226

RESUMEN

The Cr-Co-Ni system was studied by combining experimental and computational methods to investigate phase stability and mechanical properties. Thin-film materials libraries were prepared and quenched from high temperatures up to 700 °C using a novel quenching technique. It could be shown that a wide A1 solid solution region exists in the Cr-Co-Ni system. To validate the results obtained using thin-film materials libraries, bulk samples of selected compositions were prepared by arc melting, and the experimental data were additionally compared to results from DFT calculations. The computational results are in good agreement with the measured lattice parameters and elastic moduli. The lattice parameters increase with the addition of Co and Cr, with a more pronounced effect for the latter. The addition of ∼20 atom % Cr results in a similar hardening effect to that of the addition of ∼40 atom % Co.


Asunto(s)
Aleaciones/química , Cromo/química , Cobalto/química , Teoría Funcional de la Densidad , Níquel/química , Temperatura
4.
Data Brief ; 27: 104742, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31763399

RESUMEN

This brief paper contains raw data of X-ray diffraction (XRD) measurements, microstructural characterization, chemical compositions, and mechanical properties describing the influence of Al, Ti, and C on as-cast Al0.6CoCrFeNi compositionally complex alloys (CCAs). The presented data are related to the research article in reference [1] and therefore this article can be referred to as for the interpretation of the data. X-ray diffraction data presented in this paper are measurements of 2θ versus intensities for each studied alloy. A Table lists the obtained lattice parameters of each identified phase determined by Rietveld analysis. Microstructural-characterization data reported here include backscattered electron (BSE) micrographs taken at different magnifications in a scanning electron microscope (SEM) of Widmanstätten and dendritic microstructures and microstructural parameters such as phase volume fractions, thickness of face-centered cubic (FCC) plates, and prior grain sizes. The compositions of the identified individual phases determined by energy-dispersive X-ray spectroscopy (EDX) in the transmission electron microscope (TEM) are listed as well. Finally, mechanical data including engineering stress-strain curves obtained at different temperatures (room temperature, 400 °C, and 700 °C) for all CCAs are reported.

5.
ACS Comb Sci ; 21(12): 782-793, 2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31689080

RESUMEN

Cr-Al-N thin film materials libraries were synthesized by combinatorial reactive high power impulse magnetron sputtering (HiPIMS). Different HiPIMS repetition frequencies and peak power densities were applied altering the ion to growth flux ratio. Moreover, time-resolved ion energy distribution functions were measured with a retarding field energy analyzer (RFEA). The plasma properties were measured during the growth of films with different compositions within the materials library and correlated to the resulting film properties such as phase, grain size, texture, indentation modulus, indentation hardness, and residual stress. The influence of the ion to growth flux ratio on the film properties was most significant for films with high Al-content (xAl = 50 at. %). X-ray diffraction with a 2D detector revealed hcp-AlN precipitation starting from Al-concentration xAl ≥ 50 at. %. This precipitation might be related to the kinetically enhanced adatom mobility for a high ratio of ions per deposited atoms, leading to strong intermixing of the deposited species. A structure zone transition, induced by composition and flux ratio JI/JG, from zone T to zone Ic structure was observed which hints toward the conclusion that the combination of increasing flux ratio and Al-concentration lead to opposing trends regarding the increase in homologous temperature.


Asunto(s)
Aluminio/química , Cromo/química , Nitrógeno/química , Técnicas Químicas Combinatorias , Ensayo de Materiales , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA