RESUMEN
Bitter gourd extract (BGE) is rich in antioxidants and anti-diabetic components that promote good human health; however, its bitter taste makes it challenging to use in food. In this study, the effect of carboxymethyl cellulose and ß-cyclodextrin (ß-CD) on the bitterness and properties of BGE were investigated. The bitterness intensity was evaluated by the trained sensory panel, and the physicochemical properties were also determined, including viscosity, total saponin, polyphenol content, antioxidant capacity, and α-amylase inhibition activity. It was found that the bitterness of BGE with 0.75%, w/v ß-cyclodextrin decreased significantly by more than 90%. Additionally, FTIR, 1 H-NMR, and thermogravimetric analysis of BGE supplemented with ß-CD confirmed the formation of a complex between ß-CD and components of BGE. The findings of the current study also reveal that debittering agents did not inhibit the bioactivities of BGE.
RESUMEN
Machine learning (ML) has been widely used worldwide to develop crop yield forecasting models. However, it is still challenging to identify the most critical features from a dataset. Although either feature selection (FS) or feature extraction (FX) techniques have been employed, no research compares their performances and, more importantly, the benefits of combining both methods. Therefore, this paper proposes a framework that uses non-feature reduction (All-F) as a baseline to investigate the performance of FS, FX, and a combination of both (FSX). The case study employs the vegetation condition index (VCI)/temperature condition index (TCI) to develop 21 rice yield forecasting models for eight sub-regions in Vietnam based on ML methods, namely linear, support vector machine (SVM), decision tree (Tree), artificial neural network (ANN), and Ensemble. The results reveal that FSX takes full advantage of the FS and FX, leading FSX-based models to perform the best in 18 out of 21 models, while 2 (1) for FS-based (FX-based) models. These FXS-, FS-, and FX-based models improve All-F-based models at an average level of 21% and up to 60% in terms of RMSE. Furthermore, 21 of the best models are developed based on Ensemble (13 models), Tree (6 models), linear (1 model), and ANN (1 model). These findings highlight the significant role of FS, FX, and specially FSX coupled with a wide range of ML algorithms (especially Ensemble) for enhancing the accuracy of predicting crop yield.
Asunto(s)
Aprendizaje Automático , Redes Neurales de la Computación , Algoritmos , Predicción , Máquina de Vectores de SoporteRESUMEN
3-Caffeoyl-4-dicaffeoylquinic acid (CDCQ) is a natural chlorogenic acid isolated from Salicornia herbacea that protects against oxidative stress, inflammation, and cancer. Nitric oxide (NO) plays a physiologically beneficial role in the cardiovascular system, including vasodilation, protection of endothelial cell function, and anti-inflammation. However, the effect of CDCQ on NO production and eNOS phosphorylation in endothelial cells is unclear. We investigated the effect of CDCQ on eNOS phosphorylation and NO production in human endothelial cells, and the underlying signaling pathway. CDCQ significantly increased NO production and the phosphorylation of eNOS at Ser1177. Additionally, CDCQ induced phosphorylation of PKA, CaMKII, CaMKKß, and AMPK. Interestingly, CDCQ increased the intracellular Ca2+ level, and L-type Ca2+ channel (LTCC) blockade significantly attenuated CDCQ-induced eNOS activity and NO production by inhibiting PKA, CaMKII, CaMKKß, and AMPK phosphorylation. These results suggest that CDCQ increased eNOS phosphorylation and NO production by Ca2+-dependent phosphorylation of PKA, CaMKII, CaMKKß, and AMPK. Our findings provide evidence that CDCQ plays a pivotal role in the activity of eNOS and NO production, which is involved in the protection of endothelial dysfunction.
RESUMEN
Accurate crop yield forecasting is essential in the food industry's decision-making process, where vegetation condition index (VCI) and thermal condition index (TCI) coupled with machine learning (ML) algorithms play crucial roles. The drawback, however, is that a one-fits-all prediction model is often employed over an entire region without considering subregional VCI and TCI's spatial variability resulting from environmental and climatic factors. Furthermore, when using nonlinear ML, redundant VCI/TCI data present additional challenges that adversely affect the models' output. This study proposes a framework that (i) employs higher-order spatial independent component analysis (sICA), and (ii), exploits a combination of the principal component analysis (PCA) and ML (i.e., PCA-ML combination) to deal with the two challenges in order to enhance crop yield prediction accuracy. The proposed framework consolidates common VCI/TCI spatial variability into their respective subregions, using Vietnam as an example. Compared to the one-fits-all approach, subregional rice yield forecasting models over Vietnam improved by an average level of 20% up to 60%. PCA-ML combination outperformed ML-only by an average of 18.5% up to 45%. The framework generates rice yield predictions 1 to 2 months ahead of the harvest with an average of 5% error, displaying its reliability.
Asunto(s)
Aprendizaje Automático , Oryza , Algoritmos , Reproducibilidad de los ResultadosRESUMEN
Polyhexamethylene guanidine phosphate (PHMG-p), a member of the polymeric guanidine family, has strong antimicrobial activity and may increase the risk of inflammation-associated pulmonary fibrosis. However, the effect of PHMG-p on the barrier function of the bronchial epithelium is unknown. Epithelial barrier functioning is maintained by tight junctions (TJs); damage to these TJs is the major cause of epithelial barrier breakdown during lung inflammation. The present study showed that, in BEAS-2B human bronchial epithelial cells, exposure to PHMG-p reduced the number of TJs and the E-cadherin level and impaired the integrity of the F-actin architecture. Furthermore, exposure to PHMG-p stimulated the calcium-dependent protease calpain-1, which breaks down TJs. However, treatment with the calpain-1 inhibitor, ALLN, reversed the PHMG-p-mediated impairment of TJs and the F-actin architecture. Furthermore, exposure to PHMG-p increased the intracellular Ca2+ level via P2X purinoreceptor 7 (P2RX7) and inhibition of P2RX7 abolished the PHMG-p-induced calpain-1 activity and protein degradation and increased the intracellular Ca2+ level. Although exposure to PHMG-p increased the extracellular ATP level, hydrolysis of extracellular ATP by apyrase did not influence its detrimental effect on bronchial epithelial cells. These results implicate the impairment of TJs and the F-actin architecture in the pathogenesis of pulmonary diseases.
Asunto(s)
Guanidinas/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Uniones Estrechas/metabolismo , Actinas/metabolismo , Antígenos CD/metabolismo , Apirasa/metabolismo , Cadherinas/metabolismo , Calcio/metabolismo , Calpaína/metabolismo , Línea Celular , Células Epiteliales/efectos de los fármacos , Humanos , Pulmón/metabolismo , Fibrosis Pulmonar/metabolismo , Transducción de Señal/efectos de los fármacosRESUMEN
Atherosclerosis is one of the most reported diseases worldwide, and extensive research and trials are focused on the discovery and utilizing for novel therapeutics. Nitric oxide (NO) is produced mainly by endothelial nitric oxide synthase (eNOS) and it plays a key role in regulating vascular function including systemic blood pressure and vascular inflammation in vascular endothelium. In this study hypothesized that Impressic acid (IPA), a component isolated from Acanthopanax koreanum, acts as an enhancer of eNOS activity and NO production. IPA treatment induced eNOS phosphorylation and NO production, which was correlated with eNOS phosphorylation via the activation of JNK1/2, p38 MAPK, AMPK, and CaMKII. In addition, the induction of eNOS phosphorylation by IPA was attenuated by pharmacological inhibitor of MAPKs, AMPK, and CaMKII. Finally, IPA treatment prevented the adhesion of TNF-α-induced monocytes to endothelial cells and suppressed the TNF-α-stimulated ICAM-1 expression via activation of NF-κB, while treatment with L-NAME, the NOS inhibitor, reversed the inhibitory effect of IPA on TNF-α-induced ICAM-1 expression via activation of NF-κB. Taken together, these findings show that IPA protects against TNF-α-induced vascular endothelium dysfunction through attenuation of the NF-κB pathway by activating eNOS/NO pathway in endothelial cells.
Asunto(s)
Eleutherococcus/química , Transducción de Señal/efectos de los fármacos , Triterpenos/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Adhesión Celular/efectos de los fármacos , Línea Celular , Eleutherococcus/metabolismo , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , FN-kappa B/metabolismo , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Triterpenos/químicaRESUMEN
Lower physical performance is an important risk factor in hypokinetic-related chronic disease, metabolic syndrome, and muscle atrophy. Our previous research demonstrated that Platycodon grandiflorum-derived saponin (PS) protects against eccentric exercise-induced muscle damage and mitochondrial function-related peroxisomal acyl-coenzme A oxidase (ACOX-1) and carnitine palmitoyltransferase (CPT-1) in high-fat diet-induced non-alcoholic steatohepatitis, and it inhibits osteoclast differentiation. However, the effects of PS on physical performance remain unknown. Therefore, we investigated whether PS enhances physical activity and skeletal muscle function. Supplementation with PS (2â¯mg/kg for 4 weeks) increased grip strength, wheel running repetition, and time to exhaustion in treadmill and swimming exercises. Marked increases in the synthesis of skeletal muscle proteins and muscle stem cell-related paired-box 7 (PAX7) were observed, and a decrease in the negative regulator myostatin was associated with enhanced muscle regeneration. Furthermore, PS induced expression of mitochondrial function proteins, including OXPHOS-III and -IV, in vivo and in vitro. These results suggest that PS enhances exercise function by ameliorating skeletal muscle protein synthesis and mitochondrial function.
Asunto(s)
Mitocondrias Musculares/efectos de los fármacos , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Condicionamiento Físico Animal , Platycodon/química , Saponinas/farmacología , Animales , Línea Celular , Masculino , Ratones Endogámicos ICR , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Miostatina/metabolismo , Fosforilación Oxidativa , Factor de Transcripción PAX7/biosíntesisRESUMEN
Longidorus chenisp. n., an amphimictic species recovered from the rhizosphere of Larix principis-rupprechtii and Pyracantha fortuneana in Shanxi and Beijing, China, is described and illustrated. The taxonomic position of L. chenisp. n. among other species within the genus was elucidated using morphometric and molecular data, and phylogenetic relationships were inferred using D2-D3 expansion domains of 28S and 18S rRNA genes by Bayesian Inference (BI) method. The new species is characterised by females with a medium body size (L = 4.9-6.6 mm), a lip region slightly expanded, broadly rounded frontally and laterally, the amphidial fovea broad and symmetrically bilobed at base, odontostyle long and slender (143-168 µm), odonthophore slightly swollen at the base, tail short bluntly conoid to rounded. Guide ring located far posterior from the oral aperture (70-93 µm). Males with two ad-cloacal pairs of supplements preceded by a row of 10-14 ventromedian supplements, with robust spicules measuring 111-126 µm along the median line. Three juvenile stages were present, tail shape of J1 elongate conoid while in J2 and J3 the tail gradually becomes bluntly rounded. Codes for identifying the new species are: A6-B3-C5-D2-E2-F3-G1-H1-I2-J2-K2. Longidorus chenisp. n. belongs to a group of species with a guide ring at the mid-odontostyle position that have a predominantly Asiatic origin. It differs from all of them by a combination of morphological characters and unique sequences of partial 18S and D2-D3 region of 28S rRNA genes. The percentage dissimilarities in partial 18S and D2-D3 28S rRNA genes of L. cheni to the closest species (L. litchii, L. fangi, L. jonesi and L. juglans) were 1.5 %-1.8 % and 16.8-18.3 %, respectively.
RESUMEN
Recently, many reports have shown that Averrhoa carambola L. (Oxalidaceae) juice (EACJ) could reduce blood glucose in humans. However, its mechanisms have not been well explored; therefore, our study aimed to investigate the beneficial effects of EACJ on hyperglycemia, hyperlipidemia and renal injury in streptozotocin (STZ)-induced diabetic mice. Those mice were injected with STZ via the tail vein (120 mg/kg body weight) and were identified as diabetic mice when the level of blood glucose was ≥ 11.1 mmol/L. Those mice were intragastriced gavage with saline, EACJ (25, 50, 100 g/kg body weight/d) and metformin (320 mg/kg body weight/d) for 21 days. The fasting blood glucose (FBG), free fatty acids (FFA), total cholesterol (TC), triglycerides (TG), Scr (CREA) and blood urea nitrogen (BUN) were significantly decreased, while the sorbitol dehydrogenase (SDH), Cyclic Adenosine monophosphate (cAMP), malondialdehyde (MDA), superoxide dismutase (SOD), and insulin were elevated. Diabetes-dependent alterations in the kidney, such as glomerular hypertrophy, thicken and tubular basement membrane, were improved after 21 days of EACJ treatment. Hyperglycemia, renal formation and the expressions of related proteins such as connective tissue growth factor (CTGF) and transforming growth factor beta 1 (TGF-ß1) were markedly decreased by EACJ. These results indicate that EACJ treatment decrease hyperglycemia, hyperlipidemia and inhibit the progression of diabetic nephropathy (DN), which may be linked to regulating several pharmacological targets for treating or preventing DN.