Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 230: 123124, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36599386

RESUMEN

Antibacterial materials have been developed for a long time but bacteria adapt very quickly and become resistant to these materials. This study focuses on the synthesis of a hybrid material system from lignin and silver/silica nanoparticles (Lig@Ag/SiO2 NPs) which were used against bacteria including Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) and inhibited the growth of the fungal Aspergillus flavus (A. flavus). The results showed that the spherical diameter of Lig@Ag/SiO2 NPs has narrow Gaussian distribution with a range from 15 nm to 40 nm in diameter. Moreover, there was no growth of E. coli in samples containing Lig@Ag/SiO2 NPs during 72-h incubation while colonies of S. aureus were only observed at high concentrations (106 CFU/mL) although both species of bacteria were able to thrive even at low bacterial concentration when they were exposed to Ag/SiO2 or lignin. For fungal resistance results, Lig@Ag/SiO2 NPs not only reduced mycelial growth but also inhibited sporulation in A. flavus, leading to decreasing the spreading of spores into the environment. This result represents a highly effective fungal growth inhibition of Lig@Ag/SiO2 NPs compared to lignin or Ag/SiO2, which could not inhibit the growth of sporulation.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Oryza , Antifúngicos/farmacología , Staphylococcus aureus , Dióxido de Silicio/farmacología , Lignina/farmacología , Escherichia coli , Antibacterianos/farmacología , Bacterias
2.
ACS Omega ; 4(18): 17791-17797, 2019 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-31681885

RESUMEN

A novel nitrogen-phosphorus flame retardant (P-N FR) based on phosphonamidate, dimethyl N,N'-1,3-phenylenebis(P-methylphosphonamidate) (DMPMP), was successfully synthesized and its flame-retarding performances and thermal degradation were compared with those of other P-N FRs and a phosphorus-based FR such as resorcinol bis(diphenyl phosphate) (RDP). DMPMP was applied to acrylonitrile-butadiene-styrene (ABS) and ethylene-vinyl acetate (EVA) to investigate the factors governing the flame-retarding behaviors of P-N FRs which would make them efficient for noncharrable polymers. V-0 ratings were achieved at 20 wt % loading of DMPMP for ABS and at a much lesser amount of DMPMP loading (10 wt %) for EVA. Meanwhile, no rating and V-2 were achieved even at 20-30 wt % loading of other P-N FRs or RDP for ABS and EVA, respectively. The results from thermogravimetric analysis, Fourier transform infrared, and UL-94V indicated that DMPMP is a highly efficient FR and acts mainly in a gas-phase flame-retarding mode of action. The condensed phase of DMPMP also contributed to the flame retardancy property through -NH- groups which tendentiously generate a nitrogen-phosphorus-rich residue because of the intermolecular coupling transesterification reaction. These results demonstrated the assumption that DMPMP has a high P content and good hydrostability, which exhibits good flame retardancy for noncharrable polymers such as ABS and EVA.

3.
Polymers (Basel) ; 11(10)2019 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-31569369

RESUMEN

The thermal stabilities, flame retardancies, and physico-mechanical properties of rice husk-reinforced polyurethane (PU-RH) foams with and without flame retardants (FRs) were evaluated. Their flammability performances were studied by UL94, LOI, and cone calorimetry tests. The obtained results combined with FTIR, TGA, SEM, and XPS characterizations were used to evaluate the fire behaviors of the PU-RH samples. The PU-RH samples with a quite low loading (7 wt%) of aluminum diethylphosphinate (OP) and 32 wt% loading of aluminum hydroxide (ATH) had high thermal stabilities, excellent flame retardancies, UL94 V-0 ratings, and LOIs of 22%-23%. PU-RH did not pass the UL94 HB standard test and completely burned to the holder clamp with a low LOI (19%). The cone calorimetry results indicated that the fireproof characteristics of the PU foam composites were considerably improved by the addition of the FRs. The proposed flame retardancy mechanism and cone calorimetry results are consistent. The comprehensive FTIR spectroscopy, TG, SEM, and XPS analyses revealed that the addition of ATH generated white solid particles, which dispersed and covered the residue surface. The pyrolysis products of OP would self-condense or react with other volatiles generated by the decomposition of PU-RH to form stable, continuous, and thick phosphorus/aluminum-rich residual chars inhibiting the transfer of heat and oxygen. The PU-RH samples with and without the FRs exhibited the normal isothermal sorption hysteresis effect at relative humidities higher than 20%. At lower values, during the desorption, this effect was not observed, probably because of the biodegradation of organic components in the RH. The findings of this study not only contribute to the improvement in combustibility of PU-RH composites and reduce the smoke or toxic fume generation, but also solve the problem of RHs, which are abundant waste resources of agriculture materials leading to the waste disposal management problems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...