Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826446

RESUMEN

Candidalysin is a cytolytic peptide produced by the opportunistic fungal pathogen Candida albicans. This peptide is a key virulence factor in mouse models of mucosal and hematogenously disseminated candidiasis. Despite intense interest in the role of candidalysin in C. albicans pathogenicity, its host cell targets have remained elusive. To fill this knowledge gap, we performed a genome-wide loss-of-function CRISPR screen in a human oral epithelial cell line to identify specific host factors required for susceptibility to candidalysin-induced cellular damage. Among the top hits were XYLT2, B3GALT6 and B3GAT3, genes that function in glycosaminoglycan (GAG) biosynthesis. Deletion of these genes led to the absence of GAGs such as heparan sulfate on the epithelial cell surface and increased resistance to damage induced by both candidalysin and live C. albicans. Biophysical analyses including surface plasmon resonance and atomic force and electron microscopy indicated that candidalysin physically binds to sulfated GAGs, facilitating its oligomerization or enrichment on the host cell surface. The addition of exogenous sulfated GAGs or the GAG analogue dextran sulfate protected cells against candidalysin-induced damage. Dextran sulfate, but not non-sulfated dextran, also inhibited epithelial cell endocytosis of C. albicans and fungal-induced epithelial cell cytokine and chemokine production. In a murine model of vulvovaginal candidiasis, topical dextran sulfate administration reduced host tissue damage and decreased intravaginal IL-1ß and neutrophil levels. Collectively, these data indicate that GAGs are epithelial cell targets of candidalysin and can be used therapeutically to protect cells from candidalysin-induced damage.

2.
PLoS Pathog ; 19(8): e1011579, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37611070

RESUMEN

Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans. Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 are required for C. albicans to stimulate c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorates OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans.


Asunto(s)
Candida albicans , Candidiasis Bucal , Animales , Ratones , Membrana Celular , Receptores ErbB , Cadherinas , Células Epiteliales
3.
mSphere ; 8(5): e0031423, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37578262

RESUMEN

During the initiation of invasive aspergillosis, inhaled Aspergillus fumigatus conidia are deposited on the epithelial cells lining the bronchi, terminal bronchioles, and alveoli. While the interactions of A. fumigatus with bronchial and type II alveolar cell lines have been investigated in vitro, little is known about the interactions of this fungus with terminal bronchiolar epithelial cells. Using the HSAEC1-KT human small airway epithelial (HSAE) cell line, we developed an in vitro model to study the interaction of two strains of A. fumigatus with these cells. We then compared the interactions of A. fumigatus with the A549 type II alveolar epithelial cell line and the HSAE cell line. We found that A. fumigatus conidia were poorly endocytosed by A549 cells, but avidly endocytosed by HSAE cells. A. fumigatus germlings invaded both cell types by induced endocytosis, but not by active penetration. A549 cell endocytosis of A. fumigatus was independent of fungal viability, more dependent on host microfilaments than microtubules, and induced by A. fumigatus CalA interacting with host cell integrin α5ß1. By contrast, HSAE cell endocytosis required fungal viability, was more dependent on microtubules than microfilaments, and did not require CalA or integrin α5ß1. HSAE cells were more susceptible than A549 cells to damage caused by direct contact with killed A. fumigatus germlings and by secreted fungal products. In response to A. fumigatus infection, A549 cells secreted a broader profile of cytokines and chemokines than HSAE cells. Taken together, these results demonstrate that studies of HSAE cells provide complementary data to A549 cells and thus represent a useful model for probing the interactions of A. fumigatus with bronchiolar epithelial cells in vitro. Importance During the initiation of invasive aspergillosis, Aspergillus fumigatus interacts with the epithelial cells that line the airways and alveoli. Previous studies of A. fumigatus-epithelial cell interactions in vitro used either large airway epithelial cell lines or the A549 type II alveolar epithelial cell line; the interactions of fungi with terminal bronchiolar epithelial cells were not investigated. Using the TERT-immortalized human small airway epithelial HSAEC1-KT (HSAE) cell line, we developed an in vitro model of the interactions of A. fumigatus with bronchiolar epithelial cells. We discovered that A. fumigatus invades and damages A549 and HSAE cell lines by distinct mechanisms. Also, the proinflammatory responses of the cell lines to A. fumigatus are different. These results provide insight into how A. fumigatus interacts with different types of epithelial cells during invasive aspergillosis and demonstrate that HSAE cells are useful in vitro model for investigating the interactions of this fungus with bronchiolar epithelial cells.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/metabolismo , Integrina alfa5beta1/metabolismo , Células Epiteliales/microbiología , Pulmón/microbiología , Línea Celular
4.
bioRxiv ; 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37131584

RESUMEN

During the initiation of invasive aspergillosis, inhaled Aspergillus fumigatus conidia are deposited on the epithelial cells lining the bronchi, terminal bronchioles, and alveoli. While the interactions of A. fumigatus with bronchial and type II alveolar cell lines have been investigated in vitro , little is known about the interactions of this fungus with terminal bronchiolar epithelial cells. We compared the interactions of A. fumigatus with the A549 type II alveolar epithelial cell line and the HSAEC1-KT human small airway epithelial (HSAE) cell line. We found that A. fumigatus conidia were poorly endocytosed by A549 cells, but avidly endocytosed by HSAE cells. A. fumigatus germlings invaded both cell types by induced endocytosis, but not by active penetration. A549 cell endocytosis of A. fumigatus was independent of fungal viability, more dependent on host microfilaments than microtubules, and induced by A. fumigatus CalA interacting with host cell integrin α5ß1. By contrast, HSAE cell endocytosis required fungal viability, was more dependent on microtubules than microfilaments, and did not require CalA or integrin α5ß1. HSAE cells were more susceptible than A549 cells to damage caused by direct contact with killed A. fumigatus germlings and by secreted fungal products. In response to A. fumigatus infection, A549 cells secreted a broader profile of cytokines and chemokines than HSAE cells. Taken together, these results demonstrate that studies of HSAE cells provide complementary data to A549 cells and thus represent a useful model for probing the interactions of A. fumigatus with bronchiolar epithelial cells in vitro . Importance: During the initiation of invasive aspergillosis, Aspergillus fumigatus invades, damages, and stimulates the epithelial cells that line the airways and alveoli. Previous studies of A. fumigatus - epithelial cell interactions in vitro have used either large airway epithelial cell lines or the A549 type II alveolar epithelial cell line. The interactions of fungi with terminal bronchiolar epithelial cells have not been investigated. Here, we compared the interactions of A. fumigatus with A549 cells and the Tert-immortalized human small airway epithelial HSAEC1-KT (HSAE) cell line. We discovered that A. fumigatus invades and damages these two cell lines by distinct mechanisms. Also, the proinflammatory responses of the cell lines to A. fumigatus are different. These results provide insight into how A. fumigatus interacts with different types of epithelial cells during invasive aspergillosis and demonstrate that HSAE cells are useful in vitro model for investigating the interactions of this fungus with bronchiolar epithelial cells.

5.
bioRxiv ; 2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36865306

RESUMEN

Fungal invasion of the oral epithelium is central to the pathogenesis of oropharyngeal candidiasis (OPC). Candida albicans invades the oral epithelium by receptor-induced endocytosis but this process is incompletely understood. We found that C. albicans infection of oral epithelial cells induces c-Met to form a multi-protein complex with E-cadherin and the epidermal growth factor receptor (EGFR). E-cadherin is necessary for C. albicans to activate both c-Met and EGFR and to induce the endocytosis of C. albicans . Proteomics analysis revealed that c-Met interacts with C. albicans Hyr1, Als3 and Ssa1. Both Hyr1 and Als3 were required for C. albicans stimulation of c-Met and EGFR in oral epithelial cells in vitro and for full virulence during OPC in mice. Treating mice with small molecule inhibitors of c-Met and EGFR ameliorated OPC, demonstrating the potential therapeutic efficacy of blocking these host receptors for C. albicans . Highlights: c-Met is an oral epithelial cell receptor for Candida albicans C. albicans infection causes c-Met and the epidermal growth factor receptor (EGFR) to form a complex with E-cadherin, which is required for c-Met and EGFR function C. albicans Hyr1 and Als3 interact with c-Met and EGFR, inducing oral epithelial cell endocytosis and virulence during oropharyngeal candidiasis Dual blockade of c-Met and EGFR ameliorates oropharyngeal candidiasis.

6.
Phys Chem Chem Phys ; 24(41): 25611-25619, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36254777

RESUMEN

Spinel LiMn2O4 (LMO) is a well-known cathode material for lithium-ion batteries. In order to elucidate the molecular mechanism of the solid electrolyte interface (SEI) formation and the effect of an additive, vinylene carbonate (VC), we systematically studied the spontaneous and electrochemical reactions of solvents and a salt (LiPF6) in electrolytes with LMO in the absence and presence of VC. X-ray photoelectron spectroscopy (XPS) results of the LMO surfaces after soaking in the electrolyte solutions showed that the carbonate solvents as well as VC spontaneously decomposed on the LMO surfaces to form new compounds, such as alcohols, ethers, and carboxylates. The ratio of the produced LiF to MnF2 was similar for both with and without VC. Considering these spontaneously formed initial SEI components, we then investigated the variation of the SEI compositions during the initial electrochemical process until 3.8 V vs. Li+/Li. The role of the additive was studied and found that the electrochemical reaction of VC produced more organic compounds and led to an increase in the LiF/MnF2 ratio of the SEI layer. Based on the hard and soft acid and base theory, we proposed the mechanisms of the SEI formation via spontaneous and electrochemical reactions on the LMO thin film cathode with and without VC.

7.
PLoS Pathog ; 18(7): e1010681, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35797411

RESUMEN

During hematogenously disseminated candidiasis, blood borne fungi must invade the endothelial cells that line the blood vessels to infect the deep tissues. Although Candida albicans, which forms hyphae, readily invades endothelial cells, other medically important species of Candida are poorly invasive in standard in vitro assays and have low virulence in immunocompetent mouse models of disseminated infection. Here, we show that Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei can bind to vitronectin and high molecular weight kininogen present in human serum. Acting as bridging molecules, vitronectin and kininogen bind to αv integrins and the globular C1q receptor (gC1qR), inducing human endothelial cells to endocytose the fungus. This mechanism of endothelial cell invasion is poorly supported by mouse endothelial cells but can be restored when mouse endothelial cells are engineered to express human gC1qR or αv integrin. Overall, these data indicate that bridging molecule-mediated endocytosis is a common pathogenic strategy used by many medically important Candida spp. to invade human vascular endothelial cells.


Asunto(s)
Candidiasis , Células Endoteliales , Animales , Candida , Candida albicans , Candidiasis/microbiología , Células Endoteliales/microbiología , Humanos , Ratones , Vitronectina
8.
mBio ; 12(6): e0271621, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34724825

RESUMEN

During oropharyngeal candidiasis, Candida albicans activates the epidermal growth factor receptor (EGFR), which induces oral epithelial cells to endocytose the fungus and synthesize proinflammatory mediators. To elucidate EGFR signaling pathways that are stimulated by C. albicans, we used proteomics to identify 1,214 proteins that were associated with EGFR in C. albicans-infected cells. Seven of these proteins were selected for additional study. Among these proteins, WW domain-binding protein 2, Toll-interacting protein, interferon-induced transmembrane protein 3 (IFITM3), and the globular C1q receptor (gC1qR) were found to associate with EGFR in viable oral epithelial cells. Each of these proteins was required for maximal endocytosis of C. albicans, and all regulated fungus-induced production of interleukin-1ß (IL-1ß) and/or IL-8, either positively or negatively. gC1qR was found to function as a key coreceptor with EGFR. Interacting with the C. albicans Als3 invasin, gC1qR was required for the fungus to induce autophosphorylation of both EGFR and the ephrin type A receptor 2. The combination of gC1qR and EGFR was necessary for maximal endocytosis of C. albicans and secretion of IL-1ß, IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF) by human oral epithelial cells. In mouse oral epithelial cells, inhibition of gC1qR failed to block C. albicans-induced phosphorylation, and knockdown of IFITM3 did not inhibit C. albicans endocytosis, indicating that gC1qR and IFITM3 function differently in mouse versus human oral epithelial cells. Thus, this work provides an atlas of proteins that associate with EGFR and identifies several that play a central role in the response of human oral epithelial cells to C. albicans infection. IMPORTANCE Oral epithelial cells play a key role in the pathogenesis of oropharyngeal candidiasis. In addition to being target host cells for C. albicans adherence and invasion, they secrete proinflammatory cytokines and chemokines that recruit T cells and activated phagocytes to foci of infection. It is known that C. albicans activates EGFR on oral epithelial cells, which induces these cells to endocytose the organism and stimulates them to secrete proinflammatory mediators. To elucidate the EGFR signaling pathways that govern these responses, we analyzed the epithelial cell proteins that associate with EGFR in C. albicans-infected epithelial cells. We identified four proteins that physically associate with EGFR and that regulate different aspects of the epithelial response to C. albicans. One of these is gC1qR, which is required for C. albicans to activate EGFR, induce endocytosis, and stimulate the secretion of proinflammatory mediators, indicating that gC1qR functions as a key coreceptor with EGFR.


Asunto(s)
Candida albicans/fisiología , Candidiasis Bucal/metabolismo , Receptores ErbB/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Complemento/metabolismo , Animales , Candidiasis Bucal/genética , Candidiasis Bucal/microbiología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Receptores ErbB/genética , Humanos , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Unión Proteica , Receptores de Complemento/genética , Transducción de Señal
9.
PLoS Pathog ; 17(3): e1009235, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33780518

RESUMEN

To gain a better understanding of the transcriptional response of Aspergillus fumigatus during invasive pulmonary infection, we used a NanoString nCounter to assess the transcript levels of 467 A. fumigatus genes during growth in the lungs of immunosuppressed mice. These genes included ones known to respond to diverse environmental conditions and those encoding most transcription factors in the A. fumigatus genome. We found that invasive growth in vivo induces a unique transcriptional profile as the organism responds to nutrient limitation and attack by host phagocytes. This in vivo transcriptional response is largely mimicked by in vitro growth in Aspergillus minimal medium that is deficient in nitrogen, iron, and/or zinc. From the transcriptional profiling data, we selected 9 transcription factor genes that were either highly expressed or strongly up-regulated during in vivo growth. Deletion mutants were constructed for each of these genes and assessed for virulence in mice. Two transcription factor genes were found to be required for maximal virulence. One was rlmA, which is required for the organism to achieve maximal fungal burden in the lung. The other was sltA, which regulates of the expression of multiple secondary metabolite gene clusters and mycotoxin genes independently of laeA. Using deletion and overexpression mutants, we determined that the attenuated virulence of the ΔsltA mutant is due in part to decreased expression aspf1, which specifies a ribotoxin, but is not mediated by reduced expression of the fumigaclavine gene cluster or the fumagillin-pseruotin supercluster. Thus, in vivo transcriptional profiling focused on transcription factors genes provides a facile approach to identifying novel virulence regulators.


Asunto(s)
Aspergillus fumigatus/genética , Regulación Fúngica de la Expresión Génica/genética , Pulmón/virología , Factores de Transcripción/metabolismo , Animales , Aspergilosis/microbiología , Aspergillus fumigatus/patogenicidad , Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica/métodos , Hierro/metabolismo , Pulmón/metabolismo , Ratones , Virulencia/genética
10.
PLoS Pathog ; 17(1): e1009221, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33471869

RESUMEN

During oropharyngeal candidiasis (OPC), Candida albicans invades and damages oral epithelial cells, which respond by producing proinflammatory mediators that recruit phagocytes to foci of infection. The ephrin type-A receptor 2 (EphA2) detects ß-glucan and plays a central role in stimulating epithelial cells to release proinflammatory mediators during OPC. The epidermal growth factor receptor (EGFR) also interacts with C. albicans and is known to be activated by the Als3 adhesin/invasin and the candidalysin pore-forming toxin. Here, we investigated the interactions among EphA2, EGFR, Als3 and candidalysin during OPC. We found that EGFR and EphA2 constitutively associate with each other as part of a heteromeric physical complex and are mutually dependent for C. albicans-induced activation. Als3-mediated endocytosis of a C. albicans hypha leads to the formation of an endocytic vacuole where candidalysin accumulates at high concentration. Thus, Als3 potentiates targeting of candidalysin, and both Als3 and candidalysin are required for C. albicans to cause maximal damage to oral epithelial cells, sustain activation of EphA2 and EGFR, and stimulate pro-inflammatory cytokine and chemokine secretion. In the mouse model of OPC, C. albicans-induced production of CXCL1/KC and CCL20 is dependent on the presence of candidalysin and EGFR, but independent of Als3. The production of IL-1α and IL-17A also requires candidalysin but is independent of Als3 and EGFR. The production of TNFα requires Als1, Als3, and candidalysin. Collectively, these results delineate the complex interplay among host cell receptors EphA2 and EGFR and C. albicans virulence factors Als1, Als3 and candidalysin during the induction of OPC and the resulting oral inflammatory response.


Asunto(s)
Candida albicans/fisiología , Candidiasis Bucal/patología , Efrina-A2/metabolismo , Células Epiteliales/patología , Orofaringe/patología , Factores de Virulencia/metabolismo , Animales , Candidiasis Bucal/genética , Candidiasis Bucal/metabolismo , Candidiasis Bucal/microbiología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Efrina-A2/genética , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Orofaringe/metabolismo , Orofaringe/microbiología , Receptor EphA2 , Factores de Virulencia/genética
11.
Methods Mol Biol ; 2260: 27-36, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33405029

RESUMEN

Receptors on endothelial and epithelial cells often recognize molecules that are expressed by fungi, and only a limited number of these receptors have been identified to date. Here, we describe a method for identifying novel host cell receptors for fungi that uses intact organisms to precipitate biotin-labelled host cell membrane proteins, which are then detected by immunoblotting with an anti-biotin antibody. Presented here is the method to use for identification of membrane proteins that bind to C. albicans.


Asunto(s)
Western Blotting , Candida albicans/metabolismo , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Proteínas Fúngicas/metabolismo , Receptores de Superficie Celular/aislamiento & purificación , Animales , Biotinilación , Células Cultivadas , Centrifugación , Células Endoteliales/microbiología , Células Epiteliales/microbiología , Interacciones Huésped-Patógeno , Humanos , Unión Proteica
12.
Cell Rep ; 28(2): 423-433.e5, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291578

RESUMEN

During oropharyngeal candidiasis (OPC), Candida albicans proliferates and invades the superficial oral epithelium. Ephrin type-A receptor 2 (EphA2) functions as an oral epithelial cell ß-glucan receptor that triggers the production of proinflammatory mediators in response to fungal infection. Because EphA2 is also expressed by neutrophils, we investigated its role in neutrophil candidacidal activity during OPC. We found that EphA2 on stromal cells is required for the accumulation of phagocytes in the oral mucosa of mice with OPC. EphA2 on neutrophils is also central to host defense against OPC. The interaction of neutrophil EphA2 with serum-opsonized C. albicans yeast activates the MEK-ERK signaling pathway, leading to NADPH subunit p47phox site-specific phospho-priming. This priming increases intracellular reactive oxygen species production and enhances fungal killing. Thus, in neutrophils, EphA2 serves as a receptor for ß-glucans that augments Fcγ receptor-mediated antifungal activity and controls early fungal proliferation during OPC.


Asunto(s)
Antifúngicos/metabolismo , Candida albicans/patogenicidad , Mucosa Bucal/patología , Micosis/genética , Neutrófilos/metabolismo , Receptor EphA2/metabolismo , Humanos
13.
Dalton Trans ; 46(20): 6715-6722, 2017 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-28485437

RESUMEN

Crossover from an itinerant state to an isolated electronic state in electron-doped polycyclic aromatic hydrocarbon (PAH) was studied for the two smallest zigzag-type molecules of naphthalene (NN) and anthracene (AN) by focusing on their 1 : 1 stoichiometry, A1(NN) and A1(AN), with alkali metals (A = K and Rb). The competition between on-site Coulombic repulsion energy (U) and bandwidth (W) was argued in terms of their magnetic and electrical properties upon lattice expansion, when A varies from K, with a smaller ionic radius, to Rb, with a larger ionic radius. The temperature-dependence of magnetic susceptibility shows a pronounced hump associated with antiferromagnetic (AFM) interactions for Rb1(NN), being similar to those of K1(NN) and K1(AN) in the earlier report. On the other hand, Rb1(AN) intriguingly exhibits paramagnetic susceptibility, observed in a nearly localized electron system, being apart from an highly correlated Mott insulating state. Crystal structural analyses of the X-ray diffraction profiles show a small difference in lattice parameters of the ab plane among K1(NN), K1(AN), and Rb1(NN), whereas Rb1(AN) exhibits a significantly larger value than those of the others, being indicative of greatly modified interaction energies. The different magnetic properties observed in Rb1(AN) are interpreted from its modified intermolecular distance. The possibility of an emergent metallic state of K1(AN) under high pressure has also been described, referring to electrical transport measured under high pressure.

14.
Nat Microbiol ; 2: 16211, 2016 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-27841851

RESUMEN

Aspergillus fumigatus is an opportunistic fungal pathogen that invades pulmonary epithelial cells and vascular endothelial cells by inducing its own endocytosis, but the mechanism by which this process occurs is poorly understood. Here, we show that the thaumatin-like protein CalA is expressed on the surface of the A. fumigatus cell wall, where it mediates invasion of epithelial and endothelial cells. CalA induces endocytosis in part by interacting with integrin α5ß1 on host cells. In corticosteroid-treated mice, a ΔcalA deletion mutant has significantly attenuated virulence relative to the wild-type strain, as manifested by prolonged survival, reduced pulmonary fungal burden and decreased pulmonary invasion. Pretreatment with an anti-CalA antibody improves survival of mice with invasive pulmonary aspergillosis, demonstrating the potential of CalA as an immunotherapeutic target. Thus, A. fumigatus CalA is an invasin that interacts with integrin α5ß1 on host cells, induces endocytosis and enhances virulence.


Asunto(s)
Aspergillus fumigatus/fisiología , Aspergillus fumigatus/patogenicidad , Endocitosis , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Integrina alfa5beta1/metabolismo , Células A549 , Animales , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Células Epiteliales/microbiología , Células Epiteliales/fisiología , Proteínas Fúngicas/genética , Eliminación de Gen , Humanos , Pulmón/microbiología , Ratones , Unión Proteica , Aspergilosis Pulmonar/microbiología , Aspergilosis Pulmonar/patología , Análisis de Supervivencia , Virulencia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
15.
Dalton Trans ; 43(26): 10040-5, 2014 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-24867585

RESUMEN

High quality bulk samples of anthracene (AN) doped with potassium (K) in 1 : 1 and 2 : 1 stoichiometries were successfully prepared by a method involving a room temperature solid-state mechanical diffusion process prior to intercalation reactions during heat treatment, and their physical properties were studied using both magnetic and optical measurements. The transfer of almost one electron from K to AN in K1(AN) was confirmed by SQUID and ESR measurements. A pronounced magnetic hump centered at 150 K associated with antiferromagnetic interactions was observed, which can most likely be interpreted in terms of on-site Coulomb repulsions of the Mott insulating states. Optical spectra of K1(AN) clearly showed the insulating states, as well as the electron occupation of the LUMO-derived band of AN. Our results demonstrated tuning of the ground state of a typical bulk hydrocarbon by alkali metal intercalation.

16.
Eukaryot Cell ; 13(2): 279-87, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24363364

RESUMEN

In Saccharomyces cerevisiae, the vacuolar protein sorting complexes Vps51/52/53/54 and Vps15/30/34/38 are essential for efficient endosome-to-Golgi complex retrograde transport. Here we investigated the function of Vps15 and Vps51, representative members of these complexes, in the stress resistance, host cell interactions, and virulence of Candida albicans. We found that C. albicans vps15Δ/Δ and vps51Δ/Δ mutants had abnormal vacuolar morphology, impaired retrograde protein trafficking, and dramatically increased susceptibility to a variety of stressors. These mutants also had reduced capacity to invade and damage oral epithelial cells in vitro and attenuated virulence in the mouse model of oropharyngeal candidiasis. Proteomic analysis of the cell wall of the vps51Δ/Δ mutant revealed increased levels of the Crh11 and Utr2 transglycosylases, which are targets of the calcineurin signaling pathway. The transcript levels of the calcineurin pathway members CHR11, UTR2, CRZ1, CNA1, and CNA2 were elevated in the vps15Δ/Δ and vps51Δ/Δ mutants. Furthermore, these strains were highly sensitive to the calcineurin-specific inhibitor FK506. Also, deletion of CHR11 and UTR2 further increased the stress susceptibility of these mutants. In contrast, overexpression of CRH11 and UTR2 partially rescued their defects in stress resistance, but not host cell interactions. Therefore, intact retrograde trafficking in C. albicans is essential for stress resistance, host cell interactions, and virulence. Aberrant retrograde trafficking stimulates the calcineurin signaling pathway, leading to the increased expression of Chr11 and Utr2, which enables C. albicans to withstand environmental stress.


Asunto(s)
Candida albicans/metabolismo , Proteínas Fúngicas/metabolismo , Interacciones Huésped-Patógeno , Estrés Fisiológico , Proteína de Clasificación Vacuolar VPS15/metabolismo , Animales , Calcineurina/genética , Calcineurina/metabolismo , Inhibidores de la Calcineurina , Candida albicans/genética , Candida albicans/patogenicidad , Candidiasis Bucal/microbiología , Proteínas Fúngicas/genética , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Mutación , Transporte de Proteínas , Tacrolimus/farmacología , Proteína de Clasificación Vacuolar VPS15/genética , Virulencia/genética
17.
J Clin Invest ; 124(1): 237-50, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24355926

RESUMEN

Angioinvasion is a hallmark of mucormycosis. Previously, we identified endothelial cell glucose-regulated protein 78 (GRP78) as a receptor for Mucorales that mediates host cell invasion. Here we determined that spore coat protein homologs (CotH) of Mucorales act as fungal ligands for GRP78. CotH proteins were widely present in Mucorales and absent from noninvasive pathogens. Heterologous expression of CotH3 and CotH2 in Saccharomyces cerevisiae conferred the ability to invade host cells via binding to GRP78. Homology modeling and computational docking studies indicated structurally compatible interactions between GRP78 and both CotH3 and CotH2. A mutant of Rhizopus oryzae, the most common cause of mucormycosis, with reduced CotH expression was impaired for invading and damaging endothelial cells and CHO cells overexpressing GRP78. This strain also exhibited reduced virulence in a diabetic ketoacidotic (DKA) mouse model of mucormycosis. Treatment with anti-CotH Abs abolished the ability of R. oryzae to invade host cells and protected DKA mice from mucormycosis. The presence of CotH in Mucorales explained the specific susceptibility of DKA patients, who have increased GRP78 levels, to mucormycosis. Together, these data indicate that CotH3 and CotH2 function as invasins that interact with host cell GRP78 to mediate pathogenic host-cell interactions and identify CotH as a promising therapeutic target for mucormycosis.


Asunto(s)
Proteínas Fúngicas/fisiología , Mucormicosis/microbiología , Rhizopus/fisiología , Animales , Anticuerpos Antifúngicos/inmunología , Células CHO , Cricetulus , Cetoacidosis Diabética/inmunología , Cetoacidosis Diabética/microbiología , Chaperón BiP del Retículo Endoplásmico , Células Endoteliales/microbiología , Expresión Génica , Proteínas de Choque Térmico/metabolismo , Interacciones Huésped-Patógeno , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Unión Proteica , Rhizopus/patogenicidad , Saccharomyces cerevisiae , Homología de Secuencia de Aminoácido , Virulencia
18.
mBio ; 4(6): e00542-13, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24345743

RESUMEN

UNLABELLED: Candida albicans invades endothelial cells by binding to N-cadherin and other cell surface receptors. This binding induces rearrangement of endothelial cell actin microfilaments, which results in the formation of pseudopods that surround the organism and pull it into the endothelial cell. Here, we investigated the role of endothelial cell septin 7 (SEPT7) in the endocytosis of C. albicans hyphae. Using confocal microscopy, we determined that SEPT7 accumulated with N-cadherin and actin microfilaments around C. albicans as it was endocytosed by endothelial cells. Affinity purification studies indicated that a complex containing N-cadherin and SEPT7 was recruited by C. albicans and that formation of this complex around C. albicans was mediated by the fungal Als3 and Ssa1 invasins. Knockdown of N-cadherin by small interfering RNA (siRNA) reduced recruitment of SEPT7 to C. albicans, suggesting that N-cadherin functions as a link between SEPT7 and the fungus. Also, depolymerization of actin microfilaments with cytochalasin D decreased the association between SEPT7 and N-cadherin and inhibited recruitment of both SEPT7 and N-cadherin to C. albicans, indicating the necessity of an intact cytoskeleton in the functional interaction between SEPT7 and N-cadherin. Importantly, knockdown of SEPT7 decreased accumulation of N-cadherin around C. albicans in intact endothelial cells and reduced binding of N-cadherin to this organism, as revealed by the affinity purification assay. Furthermore, SEPT7 knockdown significantly inhibited the endocytosis of C. albicans. Therefore, in response to C. albicans infection, SEPT7 forms a complex with endothelial cell N-cadherin, is required for normal accumulation of N-cadherin around C. albicans hyphae, and is necessary for maximal endocytosis of the organism. IMPORTANCE: During hematogenously disseminated infection, Candida albicans invades the endothelial cell lining of the blood vessels to invade the deep tissues. C. albicans can invade endothelial cells by inducing its own endocytosis, which is triggered when the C. albicans Als3 and Ssa1 invasins bind to N-cadherin on the endothelial cell surface. How this binding induces endocytosis is incompletely understood. Septins are intracellular GTP-binding proteins that influence the function and localization of cell surface proteins. We found that C. albicans Als3 and Ssa1 bind to a complex containing N-cadherin and septin 7, which in turn interacts with endothelial cell microfilaments, thereby inducing endocytosis of the organism. The key role of septin 7 in governing receptor-mediated endocytosis is likely relevant to host cell invasion by other microbial pathogens, in addition to C. albicans.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Candida albicans/fisiología , Adhesión Celular , Proteínas de Ciclo Celular/metabolismo , Endocitosis , Células Endoteliales/microbiología , Células Endoteliales/fisiología , Septinas/metabolismo , Actinas/metabolismo , Células Cultivadas , Proteínas Fúngicas/metabolismo , Humanos , Hifa/fisiología , Unión Proteica , Multimerización de Proteína
19.
Infect Immun ; 81(7): 2528-35, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23630968

RESUMEN

During hematogenously disseminated infection, blood-borne Candida albicans invades the endothelial cell lining of the vasculature to invade the deep tissues. Although the C. albicans Als3 invasin is critical for invasion and damage of endothelial cells in vitro, a C. albicans als3Δ/Δ mutant has normal virulence in the mouse model of disseminated infection. We hypothesized that the contribution of Als3 to virulence is obscured by the presence of additional C. albicans invasins. To elucidate the in vivo function of Als3, we heterologously expressed C. albicans ALS3 in Candida glabrata, a yeast that lacks a close ALS3 ortholog and has low virulence in mice. We found that following intravenous inoculation into mice, the ALS3-expressing strain preferentially trafficked to the brain, where it induced significantly elevated levels of myeloperoxidase, tumor necrosis factor, monocyte chemoattractant protein 1, and gamma interferon. Also, the ALS3-expressing strain had enhanced adherence to and invasion of human brain microvascular endothelial cells in vitro, demonstrating a potential mechanism for ALS3-mediated neurotropism. In addition, upon initiation of infection, the ALS3-expressing strain had increased trafficking to the cortex of the kidneys. With prolonged infection, this strain persisted in the kidneys at significantly higher levels than the control strain but did not induce an elevated inflammatory response. Finally, the ALS3-expressing strain had increased resistance to neutrophil killing in vitro. These results indicate that during disseminated infection, Als3 mediates initial trafficking to the brain and renal cortex and contributes to fungal persistence in the kidneys.


Asunto(s)
Candida albicans/patogenicidad , Candida glabrata/metabolismo , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Animales , Encéfalo/microbiología , Encéfalo/patología , Candida albicans/genética , Candida albicans/inmunología , Candida glabrata/genética , Candidiasis/microbiología , Adhesión Celular , Línea Celular , Recuento de Colonia Microbiana , Endocitosis , Proteínas Fúngicas/genética , Proteínas Fúngicas/inmunología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/microbiología , Interleucina-8/metabolismo , Corteza Renal/microbiología , Corteza Renal/patología , Masculino , Ratones , Ratones Endogámicos BALB C , Neutrófilos/microbiología , Peroxidasa/metabolismo , Transporte de Proteínas
20.
Proc Natl Acad Sci U S A ; 109(35): 14194-9, 2012 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-22891338

RESUMEN

The fungus Candida albicans is the major cause of oropharyngeal candidiasis (OPC). A key feature of this disease is fungal invasion of oral epithelial cells, a process that can occur by active penetration and fungal-induced endocytosis. Two invasins, Als3 and Ssa1, induce epithelial cell endocytosis of C. albicans, in part by binding to E-cadherin. However, inhibition of E-cadherin function only partially reduces C. albicans endocytosis, suggesting that there are additional epithelial cell receptors for this organism. Here, we show that the EGF receptor (EGFR) and HER2 function cooperatively to induce the endocytosis of C. albicans hyphae. EGFR and HER2 interact with C. albicans in an Als3- and Ssa1-dependent manner, and this interaction induces receptor autophosphorylation. Signaling through both EGFR and HER2 is required for maximal epithelial cell endocytosis of C. albicans in vitro. Importantly, oral infection with C. albicans stimulates the phosphorylation of EGFR and HER2 in the oral mucosa of mice, and treatment with a dual EGFR and HER2 kinase inhibitor significantly decreases this phosphorylation and reduces the severity of OPC. These results show the importance of EGFR and HER2 signaling in the pathogenesis of OPC and indicate the feasibility of treating candidal infections by targeting the host cell receptors with which the fungus interacts.


Asunto(s)
Candida albicans/metabolismo , Candidiasis Bucal/metabolismo , Receptores ErbB/metabolismo , Mucosa Bucal/microbiología , Receptor ErbB-2/metabolismo , Transducción de Señal/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Cadherinas/metabolismo , Candida albicans/crecimiento & desarrollo , Candidiasis Bucal/patología , Modelos Animales de Enfermedad , Endocitosis/fisiología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Proteínas Fúngicas/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Mucosa Bucal/citología , Mucosa Bucal/metabolismo , Células 3T3 NIH , Fosforilación/fisiología , Tirosina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...