RESUMEN
Plastic pollution in the natural environment has been overlooked, which leads to potential risks to human health and wildlife. This paper provides an overview on citizen science approach to mitigate and manage plastic pollution in natural environments. Also, this paper highlights the importance of citizen science in raising public awareness of environmental issues and promoting sustainable practices. Case studies and different projects, such as "Plastic Pirates", "Litterati", "Trash Hunter", "International Pellat Watch", and many more projects on the role of citizen scientists are summarized, which aims to monitor and collect plastic resin pellets from different ecosystems, for example, beaches, seas, and rivers and also engage various stakeholders, for example, citizen scientists, students, academic and research organizations, non-profits, government agencies, industry, and local communities. Additionally, this paper discusses different methodologies, such as surveys and sampling approaches, using mobile apps, instruments and kits to collect information on plastic pollution. Importantly, it discusses the need for global partnerships and policies to address plastic waste management and prevent conflict. Likewise, this review emphasizes the citizen sciences and impacts of plastics on both aquatic and terrestrial ecosystems to conserve, preserve, and monitor biodiversity through citizen participation. This study also highlights the significance of community involvement, such as local, coastal, marginalized, or vulnerable communities, in environmental research and the potential benefits of citizen science programs. Overall, this paper concludes with insights into citizen science as a valuable resource tool for researchers, policymakers, and the public interested in understanding and addressing the problem of plastic pollution.
RESUMEN
Emerging technologies are increasingly employed in environmental citizen science projects. This integration offers benefits and opportunities for scientists and participants alike. Citizen science can support large-scale, long-term monitoring of species occurrences, behaviour and interactions. At the same time, technologies can foster participant engagement, regardless of pre-existing taxonomic expertise or experience, and permit new types of data to be collected. Yet, technologies may also create challenges by potentially increasing financial costs, necessitating technological expertise or demanding training of participants. Technology could also reduce people's direct involvement and engagement with nature. In this perspective, we discuss how current technologies have spurred an increase in citizen science projects and how the implementation of emerging technologies in citizen science may enhance scientific impact and public engagement. We show how technology can act as (i) a facilitator of current citizen science and monitoring efforts, (ii) an enabler of new research opportunities, and (iii) a transformer of science, policy and public participation, but could also become (iv) an inhibitor of participation, equity and scientific rigour. Technology is developing fast and promises to provide many exciting opportunities for citizen science and insect monitoring, but while we seize these opportunities, we must remain vigilant against potential risks. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Asunto(s)
Ciencia Ciudadana , Insectos , Animales , Ciencia Ciudadana/métodos , Participación de la Comunidad/métodos , Monitoreo del Ambiente/métodosRESUMEN
Seed dormancy maximizes plant recruitment in habitats with variation in environmental suitability for seedling establishment. Yet, we still lack a comprehensive synthesis of the macroecological drivers of nondormancy and the different classes of seed dormancy: physiological dormancy, morphophysiological dormancy and physical dormancy. We examined current geographic patterns and environmental correlates of global seed dormancy variation. Combining the most updated data set on seed dormancy classes for > 10 000 species with > 4 million georeferenced species occurrences covering all of the world's biomes, we test how this distribution is driven by climate and fire regime. Seed dormancy is prevalent in seasonally cold and dry climates. Physiological dormancy occurs in relatively dry climates with high temperature seasonality (e.g. temperate grasslands). Morphophysiological dormancy is more common in forest-dominated, cold biomes with comparatively high and evenly distributed precipitation. Physical dormancy is associated with dry climates with strong seasonal temperature and precipitation fluctuations (e.g. deserts and savannas). Nondormancy is associated with stable, warm and wetter climates (e.g. tropical rain forest). Pyroclimate had no significant effect on the distribution of seed dormancy. The environmental drivers considered in this study had a comparatively low predictive power, suggesting that macroclimate is just one of several global drivers of seed dormancy.
Asunto(s)
Germinación , Latencia en las Plantas , Latencia en las Plantas/fisiología , Germinación/fisiología , Semillas/fisiología , Clima , Plantas , Temperatura , Estaciones del AñoRESUMEN
Aerial seed banks facilitate population persistence by extending the temporal range of seed dispersal. Knowing the temporal range of germination will improve our understanding of the relationship between seed germination dynamics and aerial seed bank storage duration. We tested the effects of temperature (12/12 h of 5/10, 10/20, 20/30 and 25/35 °C) and light variation (12 h light/12 h darkness and 24 h darkness per day) on germination of Rumex obtusifolius L. seeds retained in an aerial seed bank for 0, 2, 4, 6, 8 and 10 months. Freshly harvested R. obtusifolius were non-dormant and exhibited germination rates of up to 92%. Overall, seeds of R. obtusifolius germinated reliably at all but the lowest temperature (5/10 °C). Seeds maintained high viability throughout the collection period, indicating that fluctuating weather conditions had little influence on seed germination. Thus, the species can maintain viable seeds in aerial storage for up to 10 months and contribute viable seeds to the soil seed bank year-round. This ability to maintain a renewed soil seed bank contributes to the species' strong resilience in colonizing disturbed areas and makes it a difficult weed to control.
RESUMEN
Herbivory is ubiquitous. Despite being a potential driver of plant distribution and performance, herbivory remains largely undocumented. Some early attempts have been made to review, globally, how much leaf area is removed through insect feeding. Kozlov et al., in one of the most comprehensive reviews regarding global patterns of herbivory, have compiled published studies regarding foliar removal and sampled data on global herbivory levels using a standardized protocol. However, in the review by Kozlov et al., only 15 sampling sites, comprising 33 plant species, were evaluated in tropical areas around the globe. In Brazil, which ranks first in terms of plant biodiversity, with a total of 46,097 species, almost half (43%) being endemic, a single data point was sampled, covering only two plant species. In an attempt to increase knowledge regarding herbivory in tropical plant species and to provide the raw data needed to test general hypotheses related to plant-herbivore interactions across large spatial scales, we proposed a joint, collaborative network to evaluate tropical herbivory. This network allowed us to update and expand the data on insect herbivory in tropical and temperate plant species. Our data set, collected with a standardized protocol, covers 45 sampling sites from nine countries and includes leaf herbivory measurements of 57,239 leaves from 209 species of vascular plants belonging to 65 families from tropical and temperate regions. They expand previous data sets by including a total of 32 sampling sites from tropical areas around the globe, comprising 152 species, 146 of them being sampled in Brazil. For temperate areas, it includes 13 sampling sites, comprising 59 species. Thus, when compared to the most recent comprehensive review of insect herbivory (Kozlov et al.), our data set has increased the base of available data for the tropical plants more than 460% (from 33 to 152 species) and the Brazilian sampling was increased 7,300% (from 2 to 146 species). Data on precise levels of herbivory are presented for more than 57,000 leaves worldwide. There are no copyright restrictions. Please cite this paper when using the current data in publications; the authors request to be informed how the data is used in the publications.
RESUMEN
Current analyses and predictions of spatially explicit patterns and processes in ecology most often rely on climate data interpolated from standardized weather stations. This interpolated climate data represents long-term average thermal conditions at coarse spatial resolutions only. Hence, many climate-forcing factors that operate at fine spatiotemporal resolutions are overlooked. This is particularly important in relation to effects of observation height (e.g. vegetation, snow and soil characteristics) and in habitats varying in their exposure to radiation, moisture and wind (e.g. topography, radiative forcing or cold-air pooling). Since organisms living close to the ground relate more strongly to these microclimatic conditions than to free-air temperatures, microclimatic ground and near-surface data are needed to provide realistic forecasts of the fate of such organisms under anthropogenic climate change, as well as of the functioning of the ecosystems they live in. To fill this critical gap, we highlight a call for temperature time series submissions to SoilTemp, a geospatial database initiative compiling soil and near-surface temperature data from all over the world. Currently, this database contains time series from 7,538 temperature sensors from 51 countries across all key biomes. The database will pave the way toward an improved global understanding of microclimate and bridge the gap between the available climate data and the climate at fine spatiotemporal resolutions relevant to most organisms and ecosystem processes.
Asunto(s)
Ecosistema , Microclima , Cambio Climático , Nieve , TemperaturaRESUMEN
BACKGROUND AND AIMS: Hydroperiod drives plant community composition in wetlands, resulting in distinct zonation patterns. Here, we explored the role of seed germination traits in shaping wetland community assembly along a hydroperiod gradient. Specifically, we tested the hypothesis that seeds of reed, mudflat, swamp, shallow- and deep-water communities only germinate under a specific set of environmental factors characterized by the community-specific optimal conditions for seedling survival and growth. METHODS: In a three-factorial experiment, we tested the seed germination response of 50 species typical for temperate wetlands of Europe to temperature fluctuations (constant vs. fluctuating temperature), illumination (light vs. darkness) and oxygen availability (aerobic vs. hypoxia). Phylogenetic principal component analysis, cluster analysis and phylogenetic linear regressions were used to confirm the community-specific seed germination niches. KEY RESULTS: Our study revealed the presence of five distinct, community-specific seed germination niches that reflect adaptations made by the study communities to decreasing light intensity, temperature fluctuations and oxygen availability along the hydroperiod gradient. Light as a germination trigger was found to be important in mudflats, swamps and shallow water, whereas the seeds of reed and deep-water species were able to germinate in darkness. A fluctuating temperature is only required for seed germination in mudflat species. Germination of species in the communities at the higher end of the hydroperiod gradient (reed and mudflat) demonstrated a strict requirement for oxygen, whereas swamp, shallow- and deep-water species also germinated under hypoxia. CONCLUSIONS: Our study supports the recent argument that the inclusion of seed germination traits in community ecology adds significant insights to community response to the abiotic and biotic environment. Furthermore, the close relationship between seed germination adaptations and community assembly could help reach a better understanding of the existing patterns of wetland plant distribution at local scales and wetland vegetation dynamics, as well as facilitate nature conservation measures and aquatic habitat restoration.
Asunto(s)
Germinación , Semillas , Europa (Continente) , Filogenia , Plantones , TemperaturaRESUMEN
Seed traits are related to several ecological attributes of a plant species, including its distribution. While the storage physiology of desiccation-sensitive seeds has drawn considerable attention, their ecology has remained sidelined, particularly how the strong seasonality of precipitation in monsoonal climate affects their temporal and spatial distribution. We compiled data on seed mass, seed desiccation behavior, seed shedding, and germination periodicity in relation to monsoon and altitude for 198 native tree species of Indian Himalayas and adjoining plains to find out (1) the adaptive significance of seed mass and seed desiccation behavior in relation to monsoon and (2) the pattern of change in seed mass in relation to altitude, habitat moisture, and succession. The tree species fall into three categories with respect to seed shedding and germination periodicities: (1) species in which both seed shedding and germination are synchronized with monsoon, referred to as monsoon-synchronized (MS, 46 species); (2) species in which seed germination is synchronized with monsoon, but seeds are shed several months before monsoon, referred to as partially monsoon-synchronized (PMS, 112 species); and (3) species in which both shedding and germination occur outside of monsoon months, referred to as monsoon-desynchronized (MD, 39 species). The seed mass of MS species (1,718 mg/seed) was greater than that of PMS (627 mg/seed) and MD (1,144 mg/seed). Of the 40 species with desiccation-sensitive seeds, 45% belong to the MS category, almost similar (approx. 47%) to woody plants with desiccation-sensitive seeds in evergreen rain forests. Seed mass differed significantly as per seed desiccation behavior and successional stage. No relationship of seed mass was found with altitude alone and on the basis of seed desiccation behavior. However, seed mass trend along the altitude differed among monsoon synchronization strategies. Based on our findings, we conclude that in the predicted climate change (warming and uncertain precipitation pattern) scenario, a delay or prolonged break-spell of monsoon may adversely affect the regeneration ecology of desiccation-sensitive seed-bearing species dominant over large forest areas of monsoonal climate.
RESUMEN
Dormancy-breaking and seed germination studies in genus Lilium reveal that the majority of Lilium spp. studied have an underdeveloped embryo at maturity, which grows inside the seed before the radicle emerges. Additionally, the embryo, radicle or cotyledon has a physiological component of dormancy; thus, Lilium seeds have morphophysiological dormancy (MPD). A previous study suggested that seeds of Lilium polyphyllum have MPD but the study did not investigate the development of the embryo, which is one of the main criteria to determine MPD in seeds. To test this hypothesis, we investigated embryo growth and emergence of radicles and epicotyls in seeds over a range of temperatures. At maturity, seeds had underdeveloped embryos which developed fully at warm temperature within 6 weeks. Immediately after embryo growth, radicles also emerged at warm temperatures. However, epicotyls failed to emerge soon after radicle emergence. Epicotyls emerged from >90% seeds with an emerged radicle only after they were subjected to 2 weeks of cold moist stratification. The overall temperature requirements for dormancy-breaking and seed germination indicate a non-deep simple epicotyl MPD in L. polyphyllum.
Asunto(s)
Germinación/fisiología , Lilium/crecimiento & desarrollo , Latencia en las Plantas/fisiología , Semillas/crecimiento & desarrollo , Lilium/embriología , Estaciones del Año , Semillas/embriología , TemperaturaRESUMEN
Only a few studies have considered the possibility that low temperature requirements may vary among stages of dormancy break in seeds with morphophysiological dormancy (MPD). We show that this lack of consideration in previous studies on seed dormancy and germination of Aegopodium podagraria might explain the low germination percentages and/or the relatively long periods of incubation needed for germination. Under natural temperatures, embryos began to grow in September and were fully elongated by late December; most growth occurred when the average daily mean temperature was about 10°C. Radicles emerged under snow in late winter, and cotyledons emerged after snowmelt in early spring. In laboratory experiments, 100% of the embryos grew to full length at both 0 and 5°C, whereas 0°C was much more effective than 5°C in overcoming the physiological dormancy in seeds after embryos were fully elongated. Following radicle emergence, cotyledons emerged readily in a wide range of temperatures ≥5°C. GA(3) did not substitute for the low temperature requirement for dormancy break. Seed dormancy in A. podagraria fits Nikolaeva's formula for deep complex MPD, i.e., C(3)B-C(3). Better germination of seeds pretreated at 0° than at 5°C has practical implications for cultivating this species.