Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 16(1): 1220-1230, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35015500

RESUMEN

Molecular engineering of biological tissues using synthetic mimics of native matrix molecules can modulate the mechanical properties of the cellular microenvironment through physical interactions with existing matrix molecules, and in turn, mediate the corresponding cell mechanobiology. In articular cartilage, the pericellular matrix (PCM) is the immediate microniche that regulates cell fate, signaling, and metabolism. The negatively charged osmo-environment, as endowed by PCM proteoglycans, is a key biophysical cue for cell mechanosensing. This study demonstrated that biomimetic proteoglycans (BPGs), which mimic the ultrastructure and polyanionic nature of native proteoglycans, can be used to molecularly engineer PCM micromechanics and cell mechanotransduction in cartilage. Upon infiltration into bovine cartilage explant, we showed that localization of BPGs in the PCM leads to increased PCM micromodulus and enhanced chondrocyte intracellular calcium signaling. Applying molecular force spectroscopy, we revealed that BPGs integrate with native PCM through augmenting the molecular adhesion of aggrecan, the major PCM proteoglycan, at the nanoscale. These interactions are enabled by the biomimetic "bottle-brush" ultrastructure of BPGs and facilitate the integration of BPGs within the PCM. Thus, this class of biomimetic molecules can be used for modulating molecular interactions of pericellular proteoglycans and harnessing cell mechanosensing. Because the PCM is a prevalent feature of various cell types, BPGs hold promising potential for improving regeneration and disease modification for not only cartilage-related healthcare but many other tissues and diseases.


Asunto(s)
Cartílago Articular , Proteoglicanos , Bovinos , Animales , Biomimética , Matriz Extracelular/metabolismo , Mecanotransducción Celular , Condrocitos/metabolismo , Biofisica
2.
J Biomed Mater Res A ; 107(9): 1977-1987, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31056821

RESUMEN

Biomimetic proteoglycan (BPG) diffusion into articular cartilage has the potential to restore the lost proteoglycan content in osteoarthritic cartilage given these molecules mimic the structure and properties of natural proteoglycans. We examined the diffusion characteristics of BPGs through cartilage with the use of a custom-made in vitro cartilage diffusion model in both normal bovine and human osteoarthritic cartilage explants. BPGs were introduced into the cartilage through essentially one-dimensional diffusion using osteochondral plugs. The molecular diffusion was shown to be size and concentration dependent. Diffusion profiles were found over different diffusion time intervals and the profiles were fit to a nonlinear Fickian diffusion model. Steady state 011012-7diffusion coefficients for BPGs were found to be 4.01 and 3.53 µm2 /s for 180 and 1600 kDa BPGs, respectfully, and these values are similar to other large molecule diffusion in cartilage. In both bovine and osteoarthritic human cartilage, BPGs were found localized around the chondrocytes. BPG localization was examined by labeling collagen type VI and soaking 5 µm thick sections of cartilage with BPG solutions demonstrating that the BPGs diffused into the cartilage and preferentially localized alongside collagen type VI in the pericellular matrix.


Asunto(s)
Materiales Biomiméticos , Cartílago Articular/química , Matriz Extracelular/química , Proteoglicanos , Animales , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacocinética , Materiales Biomiméticos/farmacología , Bovinos , Humanos , Proteoglicanos/química , Proteoglicanos/farmacocinética , Proteoglicanos/farmacología
3.
J Biomed Mater Res B Appl Biomater ; 107(7): 2409-2418, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30784181

RESUMEN

Stress urinary incontinence (SUI), a serious condition which affects ~56% of postmenopausal women, is the involuntary leakage of urine through urethra during physical activity that causes an increase in abdominal pressure. SUI is associated with a decrease in compliance and volume of urethral tissue, likely due to a reduced proteoglycan: collagen ratio in the extracellular matrix and collagen disorganization. Here, we investigated the use of biomimetic proteoglycans (BPGs) to molecularly engineer urethral tissue of New Zealand White rabbits to examine biocompatibility in vivo. BPG concentrations of 50 mg/mL (n = 6, 1 week) and 200 mg/mL (n = 6, 1 week and n = 6, 6 weeks) dissolved in 1× phosphate-buffered saline (PBS) were injected transurethrally using a 9 French cystoscope, and were compared to PBS-injected controls (n = 3, 1 week) and non-injected controls (n = 2, 1 week). Urethral compression pressure measurements confirm BPG injections did not modify normal urethral pressure, as intended. Histological assessment demonstrated biological tolerance of BPGs in urethra and no inflammatory response was detected after 1 and 6 weeks compared to non-injected controls. Confocal imaging of fluorescently-labeled BPG injected urethral specimens demonstrated the integration of BPGs into the interstitial connective tissue and confirmed they were still present after 6 weeks. A general decrease of collagen density was exhibited near injection sites which may be due to increased hydration induced by BPGs. Injection of BPGs is a novel approach that demonstrates potential as molecular treatment for SUI and may be able to reverse some of the degenerative tissue changes of individuals affected by this condition. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: 00B: 000-000, 2019. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2409-2418, 2019.


Asunto(s)
Materiales Biomiméticos/química , Matriz Extracelular/química , Proteoglicanos/química , Ingeniería de Tejidos , Uretra , Incontinencia Urinaria de Esfuerzo , Animales , Conejos , Uretra/metabolismo , Uretra/patología , Incontinencia Urinaria de Esfuerzo/metabolismo , Incontinencia Urinaria de Esfuerzo/patología , Incontinencia Urinaria de Esfuerzo/terapia
4.
J Orthop Res ; 37(2): 403-411, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30480335

RESUMEN

Biomimetic proteoglycans (BPGs) have the potential to treat osteoarthritis (OA) given that these molecules mimic the structure and properties of natural proteoglycans, which are significantly reduced in OA. We examined the effects of BPGs injected into the intra-articular space in an in vivo OA rabbit knee model and evaluated the effect on histological response, joint friction, and BPG distribution and retention. Rabbits underwent ACL transection to create an arthritic state after 5 weeks. OA rabbits were treated with BPGs or Euflexxa® (hyaluronic acid) intra-articular injections. Non-OA rabbits were injected similarly with BPGs; contralateral joints served as controls. The progression of OA and response to injections were evaluated using Mankin and gross grading systems indicating that mild OA was achieved in operated joints. The coefficient of friction (COF) of the intact knee joints were measured using a custom pendulum friction apparatus, showing that OA joints and OA + Euflexxa® joints demonstrated increased COF than non-operated controls, while BPG-injected non-OA and OA + BPGs were not significantly different from non-OA controls. Injected fluorescently labeled BPGs demonstrated that BPGs diffused into cartilage with localization in the pericellular region. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:403-411, 2019.


Asunto(s)
Osteoartritis de la Rodilla/tratamiento farmacológico , Proteoglicanos/uso terapéutico , Animales , Materiales Biomiméticos , Cartílago Articular/patología , Evaluación Preclínica de Medicamentos , Femenino , Colorantes Fluorescentes , Fricción/efectos de los fármacos , Osteoartritis de la Rodilla/patología , Proteoglicanos/farmacología , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...