Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
Más filtros












Intervalo de año de publicación
2.
Nature ; 631(8021): 563-569, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39020035

RESUMEN

The uptake of carbon dioxide (CO2) by terrestrial ecosystems is critical for moderating climate change1. To provide a ground-based long-term assessment of the contribution of forests to terrestrial CO2 uptake, we synthesized in situ forest data from boreal, temperate and tropical biomes spanning three decades. We found that the carbon sink in global forests was steady, at 3.6 ± 0.4 Pg C yr-1 in the 1990s and 2000s, and 3.5 ± 0.4 Pg C yr-1 in the 2010s. Despite this global stability, our analysis revealed some major biome-level changes. Carbon sinks have increased in temperate (+30 ± 5%) and tropical regrowth (+29 ± 8%) forests owing to increases in forest area, but they decreased in boreal (-36 ± 6%) and tropical intact (-31 ± 7%) forests, as a result of intensified disturbances and losses in intact forest area, respectively. Mass-balance studies indicate that the global land carbon sink has increased2, implying an increase in the non-forest-land carbon sink. The global forest sink is equivalent to almost half of fossil-fuel emissions (7.8 ± 0.4 Pg C yr-1 in 1990-2019). However, two-thirds of the benefit from the sink has been negated by tropical deforestation (2.2 ± 0.5 Pg C yr-1 in 1990-2019). Although the global forest sink has endured undiminished for three decades, despite regional variations, it could be weakened by ageing forests, continuing deforestation and further intensification of disturbance regimes1. To protect the carbon sink, land management policies are needed to limit deforestation, promote forest restoration and improve timber-harvesting practices1,3.


Asunto(s)
Dióxido de Carbono , Secuestro de Carbono , Bosques , Árboles , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análisis , Árboles/metabolismo , Árboles/crecimiento & desarrollo , Clima Tropical , Conservación de los Recursos Naturales , Agricultura Forestal , Cambio Climático , Combustibles Fósiles , Internacionalidad , Taiga
6.
Nat Ecol Evol ; 8(5): 901-911, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467713

RESUMEN

Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.


Asunto(s)
Biodiversidad , Inundaciones , Ríos , Árboles , Brasil , Bosques
7.
Parkinsonism Relat Disord ; : 106042, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38365523

RESUMEN

The Parkinson Study Group (PSG) gathered North American experts in Parkinson disease during the 9th Annual Symposium on "Shaping the Management of Parkinson Disease: Debating Current Controversies". Debaters were tasked with agree or disagree positions to a particular prompt. This is the first in three-part series of "Hype vs. Hope" debates involving current trends and advances in Parkinson disease. With the prompt of "Spreading alpha-synuclein explains cognitive deficits in Parkinson disease," Dr. Kelly Mills, MD, MHS was tasked with the "agree" stance and Dr. Abhimanyu Mahajan, MD, MHS was tasked with the "disagree" stance. The following point-of-view article is an adaptation of this debate.

8.
PNAS Nexus ; 3(2): pgae008, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38390215

RESUMEN

Linking individual and stand-level dynamics during forest development reveals a scaling relationship between mean tree size and tree density in forest stands, which integrates forest structure and function. However, the nature of this so-called scaling law and its variation across broad spatial scales remain unquantified, and its linkage with forest demographic processes and carbon dynamics remains elusive. In this study, we develop a theoretical framework and compile a broad-scale dataset of long-term sample forest stands (n = 1,433) from largely undisturbed forests to examine the association of temporal mean tree size vs. density scaling trajectories (slopes) with biomass accumulation rates and the sensitivity of scaling slopes to environmental and demographic drivers. The results empirically demonstrate a large variation of scaling slopes, ranging from -4 to -0.2, across forest stands in tropical, temperate, and boreal forest biomes. Steeper scaling slopes are associated with higher rates of biomass accumulation, resulting from a lower offset of forest growth by biomass loss from mortality. In North America, scaling slopes are positively correlated with forest stand age and rainfall seasonality, thus suggesting a higher rate of biomass accumulation in younger forests with lower rainfall seasonality. These results demonstrate the strong association of the transient mean tree size vs. density scaling trajectories with forest demography and biomass accumulation rates, thus highlighting the potential of leveraging forest structure properties to predict forest demography, carbon fluxes, and dynamics at broad spatial scales.

9.
Glob Chang Biol ; 30(1): e17140, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273497

RESUMEN

Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana-tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana-to-tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana-favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management.


Des preuves de plus en plus nombreuses suggèrent que la competition entre lianes et les arbres menace le puits de carbone mondial en ralentissant la récupération des forêts après une perturbation. Une théorie récente, fondée sur des observations locales et régionales, propose en outre que le succès compétitif des lianes sur les arbres est dû aux interactions entre la perturbation forestière et le climat. Nous présentons la première évaluation mondiale de la performance relative des lianes par rapport aux arbres en réponse aux perturbations forestières et aux facteurs climatiques. En utilisant un ensemble de données sans précédent, nous avons analysé 651 échantillons de végétation représentant 26,538 lianes et 82,802 arbres, issus de 556 emplacements uniques dans le monde entier, tirés de 83 publications. Les résultats montrent que les lianes ont de meilleure performances par rapport aux arbres (augmentation du ratio liane-arbre) lorsque les forêts sont perturbées, sous des zones chaudes aves précipitations faibles, et vers les basses altitudes tropicales. Nous avons également constaté que les lianes peuvent être un facteur critique entravant la récupération des forêts dans les forêts perturbées connaissant des climats favorables aux lianes, car les données de chronoséquence montrent que le succès compétitif élevé des lianes sur les arbres peut persister pendant des décennies après les perturbations, surtout lorsque la température annuelle moyenne dépasse 27.8°C, que les précipitations sont inférieures à 1614 mm et que le déficit hydrique climatique est supérieur à 829 mm. Ces découvertes révèlent que les forêts tropicales dégradées avec des conditions environnementales favorables aux lianes sont disproportionnellement plus vulnérables à la dominance des lianes, et peuvent ainsi potentiellement entraver la succession, avec d'importantes implications pour le puits de carbone mondial et devraient donc être la plus haute priorité à considérer pour la gestion de la restauration.


Asunto(s)
Árboles , Clima Tropical , Árboles/fisiología , Bosques , Secuestro de Carbono , Agua
10.
Ecol Lett ; 27(1): e14351, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38111128

RESUMEN

Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.


Asunto(s)
Ecosistema , Bosques , Humanos , Árboles , Brasil , Biodiversidad
11.
Plants (Basel) ; 12(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37960066

RESUMEN

The need to measure, monitor, and understand our living planet is greater than ever. Yet, while many technologies are applied to tackle this need, one developed in the 19th century is transforming tropical ecology. Permanent plots, in which forests are directly sensed tree-by-tree and species-by-species, already provide a global public good. They could make greater contributions still by unlocking our potential to understand future ecological change, as the more that computational and remote technologies are deployed the greater the need to ground them with direct observations and the physical, nature-based skills of those who make them. To achieve this requires building profound connections with forests and disadvantaged communities and sustaining these over time. Many of the greatest needs and opportunities in tropical forest science are therefore not to be found in space or in silico, but in vivo, with the people, places and plots who experience nature directly. These are fundamental to understanding the health, predicting the future, and exploring the potential of Earth's richest ecosystems. Now is the time to invest in the tropical field research communities who make so much possible.

12.
Commun Biol ; 6(1): 1130, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938615

RESUMEN

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution.


Asunto(s)
ARN Largo no Codificante , Árboles , Bosques , Suelo , Temperatura
13.
Nature ; 624(7990): 92-101, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37957399

RESUMEN

Forests are a substantial terrestrial carbon sink, but anthropogenic changes in land use and climate have considerably reduced the scale of this system1. Remote-sensing estimates to quantify carbon losses from global forests2-5 are characterized by considerable uncertainty and we lack a comprehensive ground-sourced evaluation to benchmark these estimates. Here we combine several ground-sourced6 and satellite-derived approaches2,7,8 to evaluate the scale of the global forest carbon potential outside agricultural and urban lands. Despite regional variation, the predictions demonstrated remarkable consistency at a global scale, with only a 12% difference between the ground-sourced and satellite-derived estimates. At present, global forest carbon storage is markedly under the natural potential, with a total deficit of 226 Gt (model range = 151-363 Gt) in areas with low human footprint. Most (61%, 139 Gt C) of this potential is in areas with existing forests, in which ecosystem protection can allow forests to recover to maturity. The remaining 39% (87 Gt C) of potential lies in regions in which forests have been removed or fragmented. Although forests cannot be a substitute for emissions reductions, our results support the idea2,3,9 that the conservation, restoration and sustainable management of diverse forests offer valuable contributions to meeting global climate and biodiversity targets.


Asunto(s)
Secuestro de Carbono , Carbono , Conservación de los Recursos Naturales , Bosques , Biodiversidad , Carbono/análisis , Carbono/metabolismo , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Actividades Humanas , Restauración y Remediación Ambiental/tendencias , Desarrollo Sostenible/tendencias , Calentamiento Global/prevención & control
15.
Science ; 382(6666): 103-109, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37797008

RESUMEN

Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.


Asunto(s)
Arqueología , Bosques , Humanos , Brasil
16.
New Phytol ; 240(5): 1774-1787, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37743552

RESUMEN

Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.


Asunto(s)
Embolia , Agua Subterránea , Agua/fisiología , Madera/fisiología , Xilema/fisiología , Plantas , Hojas de la Planta/fisiología , Sequías
18.
Tree Physiol ; 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37584458

RESUMEN

Lianas (woody vines) are important components of tropical forests and are known to compete with host trees for resources, decrease tree growth and increase tree mortality. Given the observed increases in liana abundance in some forests and their impacts on forest function, an integrated understanding of carbon dynamics of lianas and liana-infested host trees is critical for improved prediction of tropical forest responses to climate change. Non-structural carbohydrates (NSC) are the main substrate for plant metabolism (e.g., growth, respiration), and have been implicated in enabling tree survival under environmental stress, but little is known of how they vary among life-forms or of how liana infestation impacts host tree NSC. We quantified stem total NSC (NSC) concentrations and its fractions (starch and soluble sugars) in trees without liana infestation, trees with more than 50% of the canopy covered by lianas, and the lianas infesting those trees. We hypothesized that i) liana infestation depletes NSC storage in host trees by reducing carbon assimilation due to competition for resources; ii) trees and lianas, which greatly differ in functional traits related to water transport and carbon uptake, would also have large differences in NSC storage, and that As water availability has a significant role in NSC dynamics of Amazonian tree species, we tested these hypotheses within a moist site in western Amazonia and a drier forest site in southern Amazonia. We did not find any difference in NSC, starch or soluble sugar concentrations between infested and non-infested trees, in either site. This result suggests that negative liana impact on trees may be mediated through mechanisms other than depletion of host tree NSC concentrations. We found lianas have higher stem NSC and starch than trees in both sites. The consistent differences in starch concentrations, a long term NSC reserve, between life forms across sites reflect differences in carbon gain and use of lianas and trees. Soluble sugar concentrations were higher in lianas than in trees in the moist site but indistinguishable between life forms in the dry site. The lack of difference in soluble sugars between trees and lianas in the dry site emphasize the importance of this NSC fraction for plant metabolism of plants occurring in water limited environments. Abstract in Portuguese and Spanish are available in the supplementary material.

19.
Curr Biol ; 33(16): 3495-3504.e4, 2023 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-37473761

RESUMEN

Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%-18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost.


Asunto(s)
Biodiversidad , Bosques , Humanos , Bosque Lluvioso , Brasil , Clima Tropical , Conservación de los Recursos Naturales , Ecosistema
20.
Ecology ; 104(9): e4135, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37438994

RESUMEN

We compiled and presented a dataset for all timber species reported in the Amazon region from all nine South American Amazonian countries. This was based on official information from every country, as well as from two substantial scientific references. We verified the standard taxonomic names from each individual source, using the Taxonomic Name Resolution Service (TNRS) and considered all Amazonian tree species with diameter at breast height (DBH) ≥10 cm. We also obtained estimates of the current population size for most species from a published approach based on data from 1900 tree inventory plots (1-ha each) distributed across the Amazon region and part from the Amazon Tree Diversity Network (ATDN). We then identified the hyperdominant timber species. In addition, we overlapped our timber species list with data for species that are used for commercial purposes, according to the International Tropical Timber Organization (ITTO), the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the International Union for Conservation of Nature (IUCN) taxa assessment and Red List categories. Finally, we also included IUCN Red List categories based on combined deforestation, and climate change scenarios for these species. Our final Amazonian timber species dataset contains 1112 unique species records, which belong to 337 genera and 72 families from the lowland Amazonian rainforest, with associated information related to population, conservation, and trade status of each species. The authors of this research expect that the information provided will be useful to strengthen the public forestry policies of the Amazon countries, inform ecological studies, as well for forest management purposes. The data are released under the Creative Commons Attribution 4.0 International license.


Asunto(s)
Comercio , Internacionalidad , Humanos , Árboles , Bosques , Agricultura Forestal , Conservación de los Recursos Naturales , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...