Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(16): e2320623121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38607930

RESUMEN

Fine root lifespan is a critical trait associated with contrasting root strategies of resource acquisition and protection. Yet, its position within the multidimensional "root economics space" synthesizing global root economics strategies is largely uncertain, and it is rarely represented in frameworks integrating plant trait variations. Here, we compiled the most comprehensive dataset of absorptive median root lifespan (MRL) data including 98 observations from 79 woody species using (mini-)rhizotrons across 40 sites and linked MRL to other plant traits to address questions of the regulators of MRL at large spatial scales. We demonstrate that MRL not only decreases with plant investment in root nitrogen (associated with more metabolically active tissues) but also increases with construction of larger diameter roots which is often associated with greater plant reliance on mycorrhizal symbionts. Although theories linking organ structure and function suggest that root traits should play a role in modulating MRL, we found no correlation between root traits associated with structural defense (root tissue density and specific root length) and MRL. Moreover, fine root and leaf lifespan were globally unrelated, except among evergreen species, suggesting contrasting evolutionary selection between leaves and roots facing contrasting environmental influences above vs. belowground. At large geographic scales, MRL was typically longer at sites with lower mean annual temperature and higher mean annual precipitation. Overall, this synthesis uncovered several key ecophysiological covariates and environmental drivers of MRL, highlighting broad avenues for accurate parametrization of global biogeochemical models and the understanding of ecosystem response to global climate change.


Asunto(s)
Ecosistema , Longevidad , Evolución Biológica , Cambio Climático , Cabeza
2.
Nature ; 627(8004): 564-571, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38418889

RESUMEN

Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.


Asunto(s)
Biodiversidad , Bosques , Mapeo Geográfico , Árboles , Modelos Biológicos , Especificidad de la Especie , Árboles/clasificación , Árboles/fisiología , Clima Tropical
3.
Ecol Lett ; 27(1): e14349, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38178545

RESUMEN

The emergence of billions of periodical cicadas affects plant and animal communities profoundly, yet little is known about cicada impacts on soil carbon fluxes. We investigated the effects of Brood X cicadas (Magicicada septendecim, M. cassinii and M. septendeculain) on soil CO2 fluxes (RS ) in three Indiana forests. We hypothesized RS would be sensitive to emergence hole density, with the greatest effects occurring in soils with the lowest ambient fluxes. In support of our hypothesis, RS increased with increasing hole density and greater effects were observed near AM-associating trees (which expressed lower ambient fluxes) than near EcM-associating trees. Additionally, RS from emergence holes increased the temperature sensitivity (Q10 ) of RS by 13%, elevating the Q10 of ecosystem respiration. Brood X cicadas increased annual RS by ca. 2.5%, translating to an additional 717 Gg of CO2 across forested areas. As such, periodical cicadas can have substantial effects on soil processes and biogeochemistry.


Asunto(s)
Hemípteros , Micorrizas , Animales , Árboles , Ecosistema , Suelo , Dióxido de Carbono , Bosques
4.
Proc Natl Acad Sci U S A ; 121(4): e2309881120, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38190514

RESUMEN

Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.


Asunto(s)
Sequías , Ecosistema , Pradera , Ciclo del Carbono , Cambio Climático , Proteínas Tirosina Quinasas Receptoras
5.
Commun Biol ; 6(1): 1066, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37857800

RESUMEN

One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.


Asunto(s)
Micorrizas , Retroalimentación , Simbiosis , Plantas/microbiología , Suelo
6.
Nat Commun ; 14(1): 1377, 2023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36914630

RESUMEN

Decades of theory and empirical studies have demonstrated links between biodiversity and ecosystem functioning, yet the putative processes that underlie these patterns remain elusive. This is especially true for forest ecosystems, where the functional traits of plant species are challenging to quantify. We analyzed 74,563 forest inventory plots that span 35 ecoregions in the contiguous USA and found that in ~77% of the ecoregions mixed mycorrhizal plots were more productive than plots where either arbuscular or ectomycorrhizal fungal-associated tree species were dominant. Moreover, the positive effects of mixing mycorrhizal strategies on forest productivity were more pronounced at low than high tree species richness. We conclude that at low richness different mycorrhizal strategies may allow tree species to partition nutrient uptake and thus can increase community productivity, whereas at high richness other dimensions of functional diversity can enhance resource partitioning and community productivity. Our findings highlight the importance of mixed mycorrhizal strategies, in addition to that of taxonomic diversity in general, for maintaining ecosystem functioning in forests.


Asunto(s)
Ecosistema , Micorrizas , Clima Tropical , Bosques , Árboles , Biodiversidad
7.
Ecology ; 103(11): e3790, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35718753

RESUMEN

The microbial priming effect-the decomposition of soil organic carbon (SOC) induced by plant inputs-has long been considered an important driver of SOC dynamics, yet we have limited understanding about the direction, intensity, and drivers of priming across ecosystem types and biomes. This gap hinders our ability to predict how shifts in litter inputs under global change can affect climate feedbacks. Here, we synthesized 18,919 observations of CO2 effluxes in 802 soils across the globe to test the relative effects (i.e., log response ratio [RR]) of litter additions on native SOC decomposition and identified the dominant environmental drivers in natural ecosystems and agricultural lands. Globally, litter additions enhanced native SOC decomposition (RR = 0.35, 95% CI: 0.32-0.38), with greater priming effects occurring with decreasing latitude and more in agricultural soils (RR = 0.43) than in uncultivated soils (RR = 0.28). In natural ecosystems, soil pH and microbial community composition (e.g., bacteria: fungi ratio) were the best predictors of priming, with greater effects occurring in acidic, bacteria-dominated sandy soils. In contrast, the substrate properties of plant litter and soils were the most important drivers of priming in agricultural systems since soils with high C:N ratios and those receiving large inputs of low-quality litter had the highest priming effects. Collectively, our results suggest that, though different factors may control priming effects, the ubiquitous nature of priming means that alterations of litter quality and quantity owing to global changes will likely have consequences for global C cycling and climate forcing.


Asunto(s)
Ecosistema , Suelo , Suelo/química , Carbono , Ciclo del Carbono , Microbiología del Suelo , Plantas
8.
Nat Commun ; 13(1): 1229, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264580

RESUMEN

Conceptual and empirical advances in soil biogeochemistry have challenged long-held assumptions about the role of soil micro-organisms in soil organic carbon (SOC) dynamics; yet, rigorous tests of emerging concepts remain sparse. Recent hypotheses suggest that microbial necromass production links plant inputs to SOC accumulation, with high-quality (i.e., rapidly decomposing) plant litter promoting microbial carbon use efficiency, growth, and turnover leading to more mineral stabilization of necromass. We test this hypothesis experimentally and with observations across six eastern US forests, using stable isotopes to measure microbial traits and SOC dynamics. Here we show, in both studies, that microbial growth, efficiency, and turnover are negatively (not positively) related to mineral-associated SOC. In the experiment, stimulation of microbial growth by high-quality litter enhances SOC decomposition, offsetting the positive effect of litter quality on SOC stabilization. We suggest that microbial necromass production is not the primary driver of SOC persistence in temperate forests. Factors such as microbial necromass origin, alternative SOC formation pathways, priming effects, and soil abiotic properties can strongly decouple microbial growth, efficiency, and turnover from mineral-associated SOC.


Asunto(s)
Carbono , Suelo , Bosques , Minerales , Suelo/química , Microbiología del Suelo
9.
New Phytol ; 234(6): 1960-1966, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35014033

RESUMEN

First principles predict that diversity at one trophic level often begets diversity at other levels, suggesting plant and mycorrhizal fungal diversity should be coupled. Local-scale studies have shown positive coupling between the two, but the association is less consistent when extended to larger spatial and temporal scales. These inconsistencies are likely due to divergent relationships of different mycorrhizal fungal guilds to plant diversity, scale dependency, and a lack of coordinated sampling efforts. Given that mycorrhizal fungi play a central role in plant productivity and nutrient cycling, as well as ecosystem responses to global change, an improved understanding of the coupling between plant and mycorrhizal fungal diversity across scales will reduce uncertainties in predicting the ecosystem consequences of species gains and losses.


Asunto(s)
Micorrizas , Biodiversidad , Ecosistema , Hongos , Micorrizas/fisiología , Nutrientes , Plantas/microbiología , Suelo , Microbiología del Suelo
10.
Appl Environ Microbiol ; 88(1): e0178221, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34669435

RESUMEN

Trees associating with different mycorrhizas often differ in their effects on litter decomposition, nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example, due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf and root traits, ECM-associated soil has lower rates of C and N cycling and lower N availability than AM-associated soil. These observations suggest that many groups of nonmycorrhizal fungi should be affected by the mycorrhizal associations of dominant trees through controls on nutrient availability. To test this overarching hypothesis, we explored the influence of predominant forest mycorrhizal type and mineral N availability on soil fungal communities using next-generation amplicon sequencing. Soils from four temperate hardwood forests in southern Indiana, United States, were studied; three forests formed a natural gradient of mycorrhizal dominance (100% AM tree basal area to 100% ECM basal area), while the fourth forest contained a factorial experiment testing long-term N addition in both dominant mycorrhizal types. We found that overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community mycorrhizal associations explained more variation in fungal community composition than abiotic variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our findings suggest that tree mycorrhizal associations may be good predictors of the diversity, composition, and functional potential of soil fungal communities in temperate hardwood forests. These observations help explain differing biogeochemistry and community dynamics found in forest stands dominated by differing mycorrhizal types. IMPORTANCE Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e., arbuscular [AM] versus ectomycorrhizal [ECM] associations) affect soil fungal communities by altering the diversity and relative abundance of saprotrophic and plant-pathogenic fungi along natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted to become more AM dominant with climate change, studies examining soil communities along mycorrhizal gradients are necessary to understand how these global changes may alter future soil fungal communities and their functional potential. Ours, along with other recent studies, identify possible global trends in the frequency of specific fungal functional groups responsible for nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations.


Asunto(s)
Micorrizas , Bosques , Micorrizas/genética , Nitrógeno , Suelo , Microbiología del Suelo , Árboles
11.
Plant Cell Environ ; 45(2): 329-346, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34902165

RESUMEN

The coordination of plant leaf water potential (ΨL ) regulation and xylem vulnerability to embolism is fundamental for understanding the tradeoffs between carbon uptake and risk of hydraulic damage. There is a general consensus that trees with vulnerable xylem more conservatively regulate ΨL than plants with resistant xylem. We evaluated if this paradigm applied to three important eastern US temperate tree species, Quercus alba L., Acer saccharum Marsh. and Liriodendron tulipifera L., by synthesizing 1600 ΨL observations, 122 xylem embolism curves and xylem anatomical measurements across 10 forests spanning pronounced hydroclimatological gradients and ages. We found that, unexpectedly, the species with the most vulnerable xylem (Q. alba) regulated ΨL less strictly than the other species. This relationship was found across all sites, such that coordination among traits was largely unaffected by climate and stand age. Quercus species are perceived to be among the most drought tolerant temperate US forest species; however, our results suggest their relatively loose ΨL regulation in response to hydrologic stress occurs with a substantial hydraulic cost that may expose them to novel risks in a more drought-prone future.


Asunto(s)
Acer/fisiología , Sequías , Liriodendron/fisiología , Quercus/fisiología , Agua/fisiología , Xilema/fisiología , Árboles/fisiología
12.
Oecologia ; 197(3): 743-755, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34626268

RESUMEN

There is increasing evidence that plant roots and mycorrhizal fungi, whether living or dead, play a central role in soil carbon (C) cycling. Root-mycorrhizal-microbial interactions can both suppress and enhance litter decay, with the net result dependent upon belowground nutrient acquisition strategies and soil nutrient availability. We measured the net effect of living roots and mycorrhizal fungi on the decay of dead roots and fungal hyphae in a hardwood forest dominated by either sugar maple (Acer saccharum) or white oak (Quercus alba) trees. Root and fungal litter were allowed to decompose within root-ingrowth bags and root-exclusion cores. In conjunction with root effects on decay, we assessed foraging responses and root induced changes in soil moisture, nitrogen (N) availability and enzyme activity. After 1 year, maple root production increased, and mycorrhizal fungal colonization decreased in the presence of decaying litter. In addition, we found that actively foraging roots suppressed the decay of root litter (- 14%) more than fungal litter (- 3%), and suppression of root decay was stronger for oak (- 20%) than maple roots (- 8%). Suppressive effects of oak roots on decay were greatest when roots also reduced soil N availability, which corresponded with reductions in hydrolytic enzyme activity and enhanced oxidative enzyme activities. These findings further our understanding of context-dependent drivers of root-mycorrhizal-microbial interactions and demonstrate that such interactions can play an underappreciated role in soil organic matter accumulation and turnover in temperate forests.


Asunto(s)
Micorrizas , Bosques , Nitrógeno , Raíces de Plantas , Suelo , Microbiología del Suelo , Árboles
13.
Oecologia ; 196(3): 863-875, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34170396

RESUMEN

Microbial processes play a central role in controlling the availability of N in temperate forests. While bacteria, archaea, and fungi account for major inputs, transformations, and exports of N in soil, relationships between microbial community structure and N cycle fluxes have been difficult to detect and characterize. Several studies have reported differences in N cycling based on mycorrhizal type in temperate forests, but associated differences in N cycling genes underlying these fluxes are not well-understood. We explored how rates of soil N cycle fluxes vary across gradients of mycorrhizal abundance (hereafter "mycorrhizal gradients") at four temperate forest sites in Massachusetts and Indiana, USA. We paired measurements of N-fixation, net nitrification, and denitrification rates with gene abundance data for specific bacterial functional groups associated with each process. We find that the availability of NO3 and rates of N-fixation, net nitrification, and denitrification are reduced in stands dominated by trees associated with ECM fungi. On average, rates of N-fixation and denitrification in stands dominated by trees associated with arbuscular mycorrhizal fungi were more than double the corresponding rates in stands dominated by trees associated with ectomycorrhizal fungi. Despite the structuring of flux rates across the mycorrhizal gradients, we did not find concomitant shifts in the abundances of N-cycling bacterial genes, and gene abundances were not correlated with process rates. Given that AM-associating trees are replacing ECM-associating trees throughout much of the eastern US, our results suggest that shifts in mycorrhizal dominance may accelerate N cycling independent of changes in the relative abundance of N cycling bacteria, with consequences for forest productivity and N retention.


Asunto(s)
Micorrizas , Bacterias , Bosques , Nitrógeno , Suelo , Microbiología del Suelo , Árboles
14.
Oecologia ; 197(4): 971-988, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33677772

RESUMEN

Biogenic volatile organic compounds (BVOCs) play critical roles in ecological and earth-system processes. Ecosystem BVOC models rarely include soil and litter fluxes and their accuracy is often challenged by BVOC dynamics during periods of rapid ecosystem change like spring leaf out. We measured BVOC concentrations within the air space of a mixed deciduous forest and used a hybrid Lagrangian/Eulerian canopy transport model to estimate BVOC flux from the forest floor, canopy, and whole ecosystem during spring. Canopy flux measurements were dominated by a large methanol source and small isoprene source during the leaf-out period, consistent with past measurements of leaf ontogeny and theory, and indicative of a BVOC flux situation rarely used in emissions model testing. The contribution of the forest floor to whole-ecosystem BVOC flux is conditional on the compound of interest and is often non-trivial. We created linear models of forest floor, canopy, and whole-ecosystem flux for each study compound and used information criteria-based model selection to find the simplest model with the best fit. Most published BVOC flux models do not include vapor pressure deficit (VPD), but it entered the best canopy, forest floor, and whole-ecosystem BVOC flux model more than any other study variable in the present study. Since VPD is predicted to increase in the future, future studies should investigate how it contributes to BVOC flux through biophysical mechanisms like evaporative demand, leaf temperature and stomatal function.


Asunto(s)
Compuestos Orgánicos Volátiles , Ecosistema , Bosques , Estaciones del Año , Árboles , Presión de Vapor
15.
Ecol Lett ; 24(4): 626-635, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33492775

RESUMEN

Roots promote the formation of slow-cycling soil carbon (C), yet we have a limited understanding of the magnitude and controls on this flux. We hypothesised arbuscular mycorrhizal (AM)- and ectomycorrhizal (ECM)-associated trees would exhibit differences in root-derived C accumulation in the soil, and that much of this C would be transferred into mineral-associated pools. We installed δ13 C-enriched ingrowth cores across mycorrhizal gradients in six Eastern U.S. forests (n = 54 plots). Overall, root-derived C was 54% greater in AM versus ECM-dominated plots. This resulted in nearly twice as much root-derived C in putatively slow-cycling mineral-associated pools in AM compared to ECM plots. Given that our estimates of root-derived inputs were often equal to or greater than leaf litter inputs, our results suggest that variation in root-derived soil C accumulation due to tree mycorrhizal dominance may be a key control of soil C dynamics in forests.


Asunto(s)
Micorrizas , Carbono , Bosques , Nitrógeno , Raíces de Plantas , Suelo , Microbiología del Suelo , Árboles
16.
Ecology ; 102(3): e03260, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33226630

RESUMEN

Soil fungi link above- and belowground carbon (C) fluxes through their interactions with plants and contribute to C and nutrient dynamics through the production, turnover, and activity of fungal hyphae. Despite their importance to ecosystem processes, estimates of hyphal production and turnover rates are relatively uncommon, especially in temperate hardwood forests. We sequentially harvested hyphal ingrowth bags to quantify the rates of Dikarya (Ascomycota and Basidiomycota) hyphal production and turnover in three hardwood forests in the Midwestern United States, where plots differed in their abundance of arbuscular (AM)- vs. ectomycorrhizal (ECM)-associated trees. Hyphal production rates increased linearly with the percentage of ECM trees and annual production rates were 66% higher in ECM- than AM-dominated plots. Hyphal turnover rates did not differ across the mycorrhizal gradient (plots varying in their abundance of AM vs. ECM trees), suggesting that the greater fungal biomass in ECM-dominated plots relates to greater fungal production rather than slower fungal turnover. Differences in hyphal production across the gradient aligned with distinctly different fungal communities and activities. As ECM trees increased in dominance, fungi inside ingrowth bags produced more extracellular enzymes involved in degrading nitrogen (N)-bearing relative to C-bearing compounds, suggesting greater fungal (and possibly plant) N demand in ECM-dominated soils. Collectively, our results demonstrate that shifts in temperate tree species composition that result in changes in the dominant type of mycorrhizal association may have strong impacts on Dikarya hyphal production, fungal community composition and extracellular enzyme activity, with important consequences for soil C and N cycling.


Asunto(s)
Ecosistema , Micorrizas , Biomasa , Bosques , Hifa , Suelo , Microbiología del Suelo , Árboles
17.
Glob Chang Biol ; 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33319480

RESUMEN

Volatile nitrogen oxides (N2 O, NO, NO2 , HONO, …) can negatively impact climate, air quality, and human health. Using soils collected from temperate forests across the eastern United States, we show microbial communities involved in nitrogen (N) cycling are structured, in large part, by the composition of overstory trees, leading to predictable N-cycling syndromes, with consequences for emissions of volatile nitrogen oxides to air. Trees associating with arbuscular mycorrhizal (AM) fungi promote soil microbial communities with higher N-cycle potential and activity, relative to microbial communities in soils dominated by trees associating with ectomycorrhizal (ECM) fungi. Metagenomic analysis and gene expression studies reveal a 5 and 3.5 times greater estimated N-cycle gene and transcript copy numbers, respectively, in AM relative to ECM soil. Furthermore, we observe a 60% linear decrease in volatile reactive nitrogen gas flux (NOy  ≡ NO, NO2 , HONO) as ECM tree abundance increases. Compared to oxic conditions, gas flux potential of N2 O and NO increase significantly under anoxic conditions for AM soil (30- and 120-fold increase), but not ECM soil-likely owing to small concentrations of available substrate ( NO 3 - ) in ECM soil. Linear mixed effects modeling shows that ECM tree abundance, microbial process rates, and geographic location are primarily responsible for variation in peak potential NOy flux. Given that nearly all tree species associate with either AM or ECM fungi, our results indicate that the consequences of tree species shifts associated with global change may have predictable consequences for soil N cycling.

18.
Tree Physiol ; 40(2): 259-271, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-31860721

RESUMEN

Non-structural carbohydrate (NSC) pools fluctuate based on the interplay between photosynthesis, demand from various carbon (C) sinks and tree hydraulic status. Thus, it has been hypothesized that tree species with isohydric stomatal control (i.e., trees that close stomata rapidly in response to drought) rely heavily on NSC pools to sustain metabolism, which can lead to negative physiological consequences such as C depletion. Here, we seek to use a species' degree of isohydry or anisohydry as a conceptual framework for understanding the interrelations between photosynthetic C supply, hydraulic damage and fluctuations in NSC pools. We conducted a 6-week experimental drought, followed by a 6-week recovery period, in a greenhouse on seven tree species that span the spectrum from isohydric to anisohydric. Throughout the experiment, we measured photosynthesis, hydraulic damage and NSC pools. Non-structural carbohydrate pools were remarkably stable across species and tissues-even highly isohydric species that drastically reduced C assimilation were able to maintain stored C. Despite these static NSC pools, we still inferred an important role for stored C during drought, as most species converted starches into sugars during water stress (and back again post-drought). Finally, we did not observe any linkages between C supply, hydraulic damage and NSC pools, indicating that NSC was maintained independent of variation in photosynthesis and hydraulic function. Our results advance the idea that C depletion is a rare phenomenon due to either active maintenance of NSC pools or sink limitation, and thus question the hypothesis that reductions in C assimilation necessarily lead to C depletion.


Asunto(s)
Sequías , Árboles , Carbohidratos , Carbono , Agua
19.
Nat Ecol Evol ; 3(9): 1309-1320, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31427733

RESUMEN

Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in underrepresented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.


Asunto(s)
Ciclo del Carbono , Ecosistema , Carbono , China , Europa (Continente)
20.
Glob Chang Biol ; 25(9): 2978-2992, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31132225

RESUMEN

Severe drought can cause lagged effects on tree physiology that negatively impact forest functioning for years. These "drought legacy effects" have been widely documented in tree-ring records and could have important implications for our understanding of broader scale forest carbon cycling. However, legacy effects in tree-ring increments may be decoupled from ecosystem fluxes due to (a) postdrought alterations in carbon allocation patterns; (b) temporal asynchrony between radial growth and carbon uptake; and (c) dendrochronological sampling biases. In order to link legacy effects from tree rings to whole forests, we leveraged a rich dataset from a Midwestern US forest that was severely impacted by a drought in 2012. At this site, we compiled tree-ring records, leaf-level gas exchange, eddy flux measurements, dendrometer band data, and satellite remote sensing estimates of greenness and leaf area before, during, and after the 2012 drought. After accounting for the relative abundance of tree species in the stand, we estimate that legacy effects led to ~10% reductions in tree-ring width increments in the year following the severe drought. Despite this stand-scale reduction in radial growth, we found that leaf-level photosynthesis, gross primary productivity (GPP), and vegetation greenness were not suppressed in the year following the 2012 drought. Neither temporal asynchrony between radial growth and carbon uptake nor sampling biases could explain our observations of legacy effects in tree rings but not in GPP. Instead, elevated leaf-level photosynthesis co-occurred with reduced leaf area in early 2013, indicating that resources may have been allocated away from radial growth in conjunction with postdrought upregulation of photosynthesis and repair of canopy damage. Collectively, our results indicate that tree-ring legacy effects were not observed in other canopy processes, and that postdrought canopy allocation could be an important mechanism that decouples tree-ring signals from GPP.


Asunto(s)
Sequías , Ecosistema , Bosques , Fotosíntesis , Hojas de la Planta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA