Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39024077

RESUMEN

Transcranial-focused ultrasound (tFUS) procedures such as neuromodulation and blood-brain barrier (BBB) opening require precise focus placement within the brain. MRI is currently the most reliable tool for focus localization but can be prohibitive for procedures requiring recurrent therapies. We designed, fabricated, and characterized a patient-specific, 3-D-printed, stereotactic frame for repeated tFUS therapy. The frame is compact, with minimal footprint, can be removed and re-secured between treatments while maintaining sub-mm accuracy, and will allow for precise and repeatable transcranial FUS treatment without the need for MR-guidance following the initial calibration scan. Focus localization and repeatability were assessed via MR-thermometry and MR-acoustic radiation force imaging (ARFI) on an ex vivo skull phantom and in vivo nonhuman primates (NHPs), respectively. Focal localization, registration, steering, and re-steering were accomplished during the initial MRI calibration scan session. Keeping steering coordinates fixed in subsequent therapy and imaging sessions, we found good agreement between steered foci and the intended target, with target registration error (TRE) of 1.2 ± 0.3 ( n = 4 , ex vivo) and 1.0 ± 0.5 ( n = 3 , in vivo) mm. Focus position (steered and non-steered) was consistent, with sub-mm variation in each dimension between studies. Our 3-D-printed, patient-specific stereotactic frame can reliably position and orient the ultrasound transducer for repeated targeting of brain regions using a single MR-based calibration. The compact frame allows for high-precision tFUS to be carried out outside the magnet and could help reduce the cost of tFUS treatments where repeated application of an ultrasound focus is required with high precision.


Asunto(s)
Diseño de Equipo , Fantasmas de Imagen , Animales , Humanos , Terapia por Ultrasonido/métodos , Terapia por Ultrasonido/instrumentación , Imagen por Resonancia Magnética/métodos , Técnicas Estereotáxicas/instrumentación , Impresión Tridimensional , Encéfalo/diagnóstico por imagen , Macaca mulatta
2.
IEEE Trans Biomed Eng ; 71(9): 2740-2748, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38640051

RESUMEN

OBJECTIVE: Transcranial focused ultrasound (tFUS) is being explored for neuroscience research and clinical applications due to its ability to affect precise brain regions noninvasively. The ability to target specific brain regions and localize the beam during these procedures is important for these applications to avoid damage and minimize off-target effects. Here, we present a method to combine optical tracking with magnetic resonance (MR) acoustic radiation force imaging to achieve targeting and localizing of the tFUS beam. This combined method provides steering coordinates to target brain regions within a clinically practical time frame. METHODS: Using an optically tracked hydrophone and bias correction with MR imaging we transformed the FUS focus coordinates into the MR space for targeting and error correction. We validated this method in vivo in 18 macaque FUS studies. RESULTS: Across these in vivo studies a single localization scan allowed for the average targeting error to be reduced from 4.8 mm to 1.4 mm and for multiple brain regions to be targeted with one transducer position. CONCLUSIONS: By reducing targeting error and providing the means to target multiple brain regions within a single session with high accuracy this method will allow further study of the effects of tFUS neuromodulation with more advanced approaches such as simultaneous dual or multi-site brain stimulation.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Animales , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Macaca mulatta , Reproducibilidad de los Resultados
3.
J Control Release ; 363: 707-720, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37827222

RESUMEN

The use of focused ultrasound to open the blood-brain barrier (BBB) has the potential to deliver drugs to specific regions of the brain. The size of the BBB opening and ability to localize the opening determines the spatial extent and is a limiting factor in many applications of BBB opening where targeting a small brain region is desired. Here we evaluate the performance of a system designed for small opening volumes and highlight the unique challenges associated with pushing the spatial precision of this technique. To achieve small volume openings in cortical regions of the macaque brain, we tested a custom 1 MHz array transducer integrated into a magnetic resonance image-guided focused ultrasound system. Using real-time cavitation monitoring, we demonstrated twelve instances of single sonication, small volume BBB opening with average volumes of 59 ± 37 mm3 and 184 ± 2 mm3 in cortical and subcortical targets, respectively. We found high correlation between subject-specific acoustic simulations and observed openings when incorporating grey matter segmentation (R2 = 0.8577), and the threshold for BBB opening based on simulations was 0.53 MPa. Analysis of MRI-based safety assessment and cavitation signals indicate a safe pressure range for 1 MHz BBB opening and suggest that our system can be used to deliver drugs and gene therapy to small brain regions.


Asunto(s)
Barrera Hematoencefálica , Macaca , Animales , Barrera Hematoencefálica/patología , Encéfalo/diagnóstico por imagen , Ultrasonografía , Sonicación/métodos , Imagen por Resonancia Magnética , Microburbujas
4.
Brain Stimul ; 16(5): 1430-1444, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37741439

RESUMEN

BACKGROUND: MRI-guided transcranial focused ultrasound (MRgFUS) as a next-generation neuromodulation tool can precisely target and stimulate deep brain regions with high spatial selectivity. Combined with MR-ARFI (acoustic radiation force imaging) and using fMRI BOLD signal as functional readouts, our previous studies have shown that low-intensity FUS can excite or suppress neural activity in the somatosensory cortex. OBJECTIVE: To investigate whether low-intensity FUS can suppress nociceptive heat stimulation-induced responses in thalamic nuclei during hand stimulation, and to determine how this suppression influences the information processing flow within nociception networks. FINDINGS: BOLD fMRI activations evoked by 47.5 °C heat stimulation of hand were detected in 24 cortical regions, which belong to sensory, affective, and cognitive nociceptive networks. Concurrent delivery of low-intensity FUS pulses (650 kHz, 550 kPa) to the predefined heat nociceptive stimulus-responsive thalamic centromedial_parafascicular (CM_para), mediodorsal (MD), ventral_lateral (VL_ and ventral_lateral_posteroventral (VLpv) nuclei suppressed their heat responses. Off-target cortical areas exhibited reduced, enhanced, or no significant fMRI signal changes, depending on the specific areas. Differentiable thalamocortical information flow during the processing of nociceptive heat input was observed, as indicated by the time to reach 10% or 30% of the heat-evoked BOLD signal peak. Suppression of thalamic heat responses significantly altered nociceptive processing flow and direction between the thalamus and cortical areas. Modulation of contralateral versus ipsilateral areas by unilateral thalamic activity differed. Signals detected in high-order cortical areas, such as dorsal frontal (DFC) and ventrolateral prefrontal (vlPFC) cortices, exhibited faster response latencies than sensory areas. CONCLUSIONS: The concurrent delivery of FUS suppressed nociceptive heat response in thalamic nuclei and disrupted the nociceptive network. This study offers new insights into the causal functional connections within the thalamocortical networks and demonstrates the modulatory effects of low-intensity FUS on nociceptive information processing.


Asunto(s)
Nocicepción , Núcleos Talámicos , Núcleos Talámicos/fisiología , Tálamo , Encéfalo , Cognición
5.
Artículo en Inglés | MEDLINE | ID: mdl-37028345

RESUMEN

[[gabstract]][] Focused ultrasound (FUS) can temporarily open the blood-brain barrier (BBB) and increase the delivery of chemotherapeutics, viral vectors, and other agents to the brain parenchyma. To limit FUS BBB opening to a single brain region, the transcranial acoustic focus of the ultrasound transducer must not be larger than the region targeted. In this work, we design and characterize a therapeutic array optimized for BBB opening at the frontal eye field (FEF) in macaques. We used 115 transcranial simulations in four macaques varying f-number and frequency to optimize the design for focus size, transmission, and small device footprint. The design leverages inward steering for focus tightening, a 1-MHz transmit frequency, and can focus to a simulation predicted 2.5- ± 0.3-mm lateral and 9.5- ± 1.0-mm axial full-width at half-maximum spot size at the FEF without aberration correction. The array is capable of steering axially 35 mm outward, 26 mm inward, and laterally 13 mm with 50% the geometric focus pressure. The simulated design was fabricated, and we characterized the performance of the array using hydrophone beam maps in a water tank and through an ex vivo skull cap to compare measurements with simulation predictions, achieving a 1.8-mm lateral and 9.5-mm axial spot size with a transmission of 37% (transcranial, phase corrected). The transducer produced by this design process is optimized for BBB opening at the FEF in macaques.


Asunto(s)
Barrera Hematoencefálica , Terapia por Ultrasonido , Barrera Hematoencefálica/diagnóstico por imagen , Ultrasonografía , Encéfalo , Cráneo/diagnóstico por imagen
6.
bioRxiv ; 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36909495

RESUMEN

Focused ultrasound blood-brain barrier (BBB) opening is a promising tool for targeted delivery of therapeutic agents into the brain. The volume of opening determines the extent of therapeutic administration and sets a lower bound on the size of targets which can be selectively treated. We tested a custom 1 MHz array transducer optimized for cortical regions in the macaque brain with the goal of achieving small volume openings. We integrated this device into a magnetic resonance image guided focused ultrasound system and demonstrated twelve instances of small volume BBB opening with average opening volumes of 59 ± 37 mm 3 and 184 ± 2 mm 3 in cortical and subcortical targets, respectively. We developed real-time cavitation monitoring using a passive cavitation detector embedded in the array and characterized its performance on a bench-top flow phantom mimicking transcranial BBB opening procedures. We monitored cavitation during in-vivo procedures and compared cavitation metrics against opening volumes and safety outcomes measured with FLAIR and susceptibility weighted MR imaging. Our findings show small BBB opening at cortical targets in macaques and characterize the safe pressure range for 1 MHz BBB opening. Additionally, we used subject-specific simulations to investigate variance in measured opening volumes and found high correlation (R 2 = 0.8577) between simulation predictions and observed measurements. Simulations suggest the threshold for 1 MHz BBB opening was 0.53 MPa. This system enables BBB opening for drug delivery and gene therapy to be targeted to more specific brain regions.

7.
Brain Stimul ; 15(6): 1552-1564, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36496128

RESUMEN

We have previously shown that focused ultrasound (FUS) pulses in low pressure range exerted bidirectional and brain state-dependent neuromodulation in the nonhuman primate somatosensory cortices by fMRI. Here we aim to gain insights about the proposed neuron selective modulation of FUS and probe feedforward versus feedback interactions by simultaneously quantifying the stimulus (FUS pressures: 925, 425, 250 kPa) and response (% BOLD fMRI changes) function at the targeted area 3a/3b and off-target cortical areas at 7T. In resting-state, lowered intensities of FUS resulted in decreased fMRI signal changes at the target area 3a/3b and off-target area 1/2, S2, MCC, insula and auditory cortex, and no signal difference in thalamic VPL and MD nuclei. In activated states, concurrent high-intensity FUS significantly enhanced touch-evoked signals in area 1/2. Medium- and low-intensity FUS significantly suppressed touch-evoked BOLD signals in all areas except in the auditory cortex, VPL and MD thalamic nuclei. Distinct state dependent and dose-response curves led us to hypothesize that FUS's neuromodulatory effects may be mediated through preferential activation of different populations of neurons. Area 3a/3b may have distinct causal feedforward and feedback interactions with Area 1/2, S2, MCC, insula, and VPL. FUS offers a noninvasive neural stimulation tool for dissecting brain circuits and probing causal functional connections.


Asunto(s)
Encéfalo , Percepción del Tacto , Animales , Encéfalo/diagnóstico por imagen , Corteza Somatosensorial/fisiología , Mapeo Encefálico , Tacto/fisiología , Imagen por Resonancia Magnética/métodos
8.
Sci Rep ; 12(1): 14758, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042266

RESUMEN

The blood-brain barrier (BBB) prevents harmful toxins from entering brain but can also inhibit therapeutic molecules designed to treat neurodegenerative diseases. Focused ultrasound (FUS) combined with microbubbles can enhance permeability of BBB and is often performed under MRI guidance. We present an all-ultrasound system capable of targeting desired regions to open BBB with millimeter-scale accuracy in two dimensions based on Doppler images. We registered imaging coordinates to FUS coordinates with target registration error of 0.6 ± 0.3 mm and used the system to target microbubbles flowing in cellulose tube in two in vitro scenarios (agarose-embedded and through a rat skull), while receiving echoes on imaging transducer. We created passive acoustic maps from received echoes and found error between intended location in imaging plane and location of pixel with maximum intensity after passive acoustic maps reconstruction to be within 2 mm in 5/6 cases. We validated ultrasound-guided procedure in three in vivo rat brains by delivering MRI contrast agent to cortical regions of rat brains after BBB opening. Landmark-based registration of vascular maps created with MRI and Doppler ultrasound revealed BBB opening inside the intended focus with targeting accuracy within 1.5 mm. Combined use of power Doppler imaging with passive acoustic mapping demonstrates an ultrasound-based solution to guide focused ultrasound with high precision in rodents.


Asunto(s)
Barrera Hematoencefálica , Microburbujas , Acústica , Animales , Barrera Hematoencefálica/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Sistemas de Liberación de Medicamentos/métodos , Imagen por Resonancia Magnética , Ratas , Ultrasonografía Doppler
9.
JASA Express Lett ; 2(6): 062001, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35782333

RESUMEN

Localizing the focus during transcranial focused ultrasound procedures is important to ensure accurate targeting of specific brain regions and interpretation of results. Magnetic resonance acoustic radiation force imaging uses the displacement induced by the ultrasound focus in the brain to localize the beam, but the high pressure required to displace brain tissue may cause damage or confounds during subsequent neuromodulatory experiments. Here, reduced apertures were applied to a phased array transducer to generate comparable displacement to the full aperture but with 20% lower free field pressure.

10.
Brain Stimul ; 14(2): 261-272, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33460838

RESUMEN

Transcranial focused ultrasound (FUS) stimulation under MRI guidance, coupled with functional MRI (fMRI) monitoring of effects, offers a precise, noninvasive technology to dissect functional brain circuits and to modulate altered brain functional networks in neurological and psychiatric disorders. Here we show that ultrasound at moderate intensities modulated neural activity bi-directionally. Concurrent sonication of somatosensory areas 3a/3b with 250 kHz FUS suppressed the fMRI signals produced there by peripheral tactile stimulation, while at the same time eliciting fMRI activation at inter-connected, off-target brain regions. Direct FUS stimulation of the cortex resulted in different degrees of BOLD signal changes across all five off-target regions, indicating that its modulatory effects on active and resting neurons differed. This is the first demonstration of the dual suppressive and excitative modulations of FUS on a specific functional circuit and of ability of concurrent FUS and MRI to evaluate causal interactions between functional circuits with neuron-class selectivity.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Animales , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Humanos , Primates , Descanso
11.
Ultrasound Med Biol ; 47(3): 679-692, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33341303

RESUMEN

Neuromodulation with focused ultrasound (FUS) is being widely explored as a non-invasive tool to stimulate focal brain regions because of its superior spatial resolution and coverage compared with other neuromodulation methods. The precise effects of FUS stimulation on specific regions of the brain are not yet fully understood. Here, we characterized the behavioral effects of FUS stimulation directly applied through a craniotomy over the macaque frontal eye field (FEF). In macaque monkeys making directed eye movements to perform visual search tasks with direct or arbitrary responses, focused ultrasound was applied through a craniotomy over the FEF. Saccade response times (RTs) and error rates were determined for trials without or with FUS stimulation with pulses at a peak negative pressure of either 250 or 425 kPa. Both RTs and error rates were affected by FUS. Responses toward a target located contralateral to the FUS stimulation were approximately 3 ms slower in the presence of FUS in both monkeys studied, while only one exhibited a slowing of responses for ipsilateral targets. Error rates were lower in one monkey in this study. In another search task requiring making eye movements toward a target (pro-saccades) or in the opposite direction (anti-saccades), the RT for pro-saccades increased in the presence of FUS stimulation. Our results indicate the effectiveness of FUS to modulate saccadic responses when stimulating FEF in awake, behaving non-human primates.


Asunto(s)
Lóbulo Frontal/efectos de la radiación , Ondas Ultrasónicas , Animales , Macaca mulatta , Masculino
12.
Sci Rep ; 9(1): 16235, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31700021

RESUMEN

The aim of this study was to improve the sensitivity of magnetic resonance-acoustic radiation force imaging (MR-ARFI) to minimize pressures required to localize focused ultrasound (FUS) beams, and to establish safe FUS localization parameters for ongoing ultrasound neuromodulation experiments in living non-human primates. We developed an optical tracking method to ensure that the MR-ARFI motion-encoding gradients (MEGs) were aligned with a single-element FUS transducer and that the imaged slice was prescribed at the optically tracked location of the acoustic focus. This method was validated in phantoms, which showed that MR-ARFI-derived displacement sensitivity is maximized when the MR-ARFI MEGs were maximally aligned with the FUS propagation direction. The method was then applied in vivo to acquire displacement images in two healthy macaque monkeys (M fascicularis) which showed the FUS beam within the brain. Temperature images were acquired using MR thermometry to provide an estimate of in vivo brain temperature changes during MR-ARFI, and pressure and thermal simulations of the acoustic pulses were performed using the k-Wave package which showed no significant heating at the focus of the FUS beam. The methods presented here will benefit the multitude of transcranial FUS applications as well as future human applications.


Asunto(s)
Acústica , Imagen por Resonancia Magnética/efectos adversos , Seguridad , Cráneo , Ondas Ultrasónicas/efectos adversos , Animales , Encéfalo/diagnóstico por imagen , Macaca , Temperatura
13.
Sci Rep ; 8(1): 7993, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789605

RESUMEN

Focused ultrasound (FUS) has gained recognition as a technique for non-invasive neuromodulation with high spatial precision and the ability to both excite and inhibit neural activity. Here we demonstrate that MRI-guided FUS is capable of exciting precise targets within areas 3a/3b in the monkey brain, causing downstream activations in off-target somatosensory and associated brain regions which are simultaneously detected by functional MRI. The similarity between natural tactile stimulation-and FUS- evoked fMRI activation patterns suggests that FUS likely can excite populations of neurons and produce associated spiking activities that may be subsequently transmitted to other functionally related touch regions. The across-region differences in fMRI signal changes relative to area 3a/3b between tactile and FUS conditions also indicate that FUS modulated the tactile network differently. The significantly faster rising (>1 sec) fMRI signals elicited by direct FUS stimulation at the targeted cortical region suggest that a different neural hemodynamic coupling mechanism may be involved in generating fMRI signals. This is the first demonstration of imaging neural excitation effects of FUS with BOLD fMRI on a specific functional circuit in non-human primates.


Asunto(s)
Mapeo Encefálico/métodos , Encéfalo/anatomía & histología , Imagen por Resonancia Magnética/métodos , Red Nerviosa/anatomía & histología , Estimulación Física/métodos , Células Receptoras Sensoriales/citología , Ultrasonografía Intervencional/métodos , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Estimulación Encefálica Profunda/métodos , Macaca fascicularis , Imagen por Resonancia Magnética Intervencional/métodos , Masculino , Red Nerviosa/diagnóstico por imagen , Red Nerviosa/fisiología , Células Receptoras Sensoriales/fisiología , Corteza Somatosensorial/fisiología
14.
J Invest Dermatol ; 133(7): 1822-6, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23353985

RESUMEN

Pump-probe microscopy nondestructively differentiates eumelanin and pheomelanin and can be used to quantify melanin distributions in thin biopsy slices. Here we have extended that work for imaging eumelanin and pheomelanin distributions on a subcellular scale, allowing elucidation of characteristics of different cell types. The results show that melanin heterogeneity, previously found to be characteristic of melanomas, persists on the subcellular scale. We have also found spectral changes associated with melanin located in melanophages that could potentially differentiate invasive pigmented melanocytes from melanophages without immunohistochemical staining.


Asunto(s)
Melaninas/metabolismo , Melanoma/metabolismo , Microscopía Fluorescente/métodos , Neoplasias Cutáneas/metabolismo , Espectroscopía Infrarroja Corta/métodos , Biopsia , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Macrófagos/metabolismo , Macrófagos/patología , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/patología , Neoplasias Cutáneas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...