RESUMEN
Background/Objective: We present an adolescent male with Noonan syndrome (NS) and celiac disease (CD) who attained normal adult height with growth hormone (GH) treatment and gluten-free diet (GFD). Case Report: A 15 ½ year old healthy male presented with short stature and delayed puberty. His mother and maternal grandmother were short with heights 142.2 cm and 147.3 cm, respectively. Examination showed bilateral epicanthal folds and down slanting eyes like his mother, fifth finger clinodactyly, height 147.5 cm (<1%; standard deviation score, -2.96), growth velocity 2.5 cm/y, weight 48.2 kg (11%; standard deviation score, -1.24), Tanner 2 pubic hair and Tanner 1 genitalia. Midparental target height was 169.1 cm. He had normal screening studies for GH deficiency and thyroid disorders, prepubertal gonadotropins and testosterone levels, and normal total immunoglobulin A, and elevated antitissue transglutaminase immunoglobulin A 134.7units/mL (0-20). Bone age was 13 years. Genetic evaluation revealed heterozygous missense variant of BRAF gene in him and his mother confirming a diagnosis of NS. He was diagnosed with CD by intestinal biopsy. Patient was started on GH therapy and a GFD with subsequent improvement in growth velocit (6.8-12.3 cm/y) and advancement of puberty. The patient stopped GH therapy at 17 ½ years with a height 165.9 cm. Discussion: Coexistence of NS caused by BRAF missense variant and CD has not been previously reported. Our patient attained normal adult height with GH therapy and GFD. Conclusion: NS and CD can co-occur and addressing both these disorders can help patients attain normal height potential.
RESUMEN
Selenophosphate synthetase (SEPHS) plays an essential role in selenium metabolism. Two mammalian SEPHS paralogues, SEPHS1 and SEPHS2, share high sequence identity and structural homology with SEPHS. Here, we report nine individuals from eight families with developmental delay, growth and feeding problems, hypotonia, and dysmorphic features, all with heterozygous missense variants in SEPHS1. Eight of these individuals had a recurrent variant at amino acid position 371 of SEPHS1 (p.Arg371Trp, p.Arg371Gln, and p.Arg371Gly); seven of these variants were known to be de novo. Structural modeling and biochemical assays were used to understand the effect of these variants on SEPHS1 function. We found that a variant at residue Trp352 results in local structural changes of the C-terminal region of SEPHS1 that decrease the overall thermal stability of the enzyme. In contrast, variants of a solvent-exposed residue Arg371 do not impact enzyme stability and folding but could modulate direct protein-protein interactions of SEPSH1 with cellular factors in promoting cell proliferation and development. In neuronal SH-SY5Y cells, we assessed the impact of SEPHS1 variants on cell proliferation and ROS production and investigated the mRNA expression levels of genes encoding stress-related selenoproteins. Our findings provided evidence that the identified SEPHS1 variants enhance cell proliferation by modulating ROS homeostasis. Our study supports the hypothesis that SEPHS1 plays a critical role during human development and provides a basis for further investigation into the molecular mechanisms employed by SEPHS1. Furthermore, our data suggest that variants in SEPHS1 are associated with a neurodevelopmental disorder.
Asunto(s)
Discapacidad Intelectual , Anomalías Musculoesqueléticas , Trastornos del Neurodesarrollo , Animales , Niño , Humanos , Discapacidades del Desarrollo/genética , Exones , Discapacidad Intelectual/genética , Mamíferos/genética , Hipotonía Muscular/genética , Anomalías Musculoesqueléticas/genética , Neuroblastoma/genética , Trastornos del Neurodesarrollo/genética , Especies Reactivas de OxígenoRESUMEN
INTRODUCTION: The standard of care for patients with infantile-onset Pompe disease (IOPD) is enzyme replacement therapy (ERT), which does not cross the blood brain barrier. While neuromuscular manifestations of IOPD are well-described, central nervous system (CNS) manifestations of this disorder are far less characterized. Here we describe severe CNS-related neurological manifestations including seizures and encephalopathy in six individuals with IOPD. METHOD: We identified six children with IOPD who developed CNS manifestations such as seizures and/or encephalopathy. We studied their brain magnetic resonance imaging scans (MRIs) and graded the severity of white matter hyperintensities (WMHI) using the Fazekas scale scoring system as previously published. Longitudinal cognitive measures were available from 4/6 children. RESULTS: All six IOPD patients (4 males/2 females) had been treated with ERT for 12-15 years. Seizures and/or encephalopathy were noted at a median age at onset of 11.9 years (range 9-15 years). All were noted to have extensive WMHI in the brain MRIs and very high Fazekas scores which preceded the onset of neurological symptoms. Longitudinal IQ scores from four of these children suggested developmental plateauing. DISCUSSION: Among a subset of IOPD patients on long-term ERT, CNS manifestations including hyperreflexia, encephalopathy and seizures may become prominent, and there is likely an association between these symptoms and significant WMHI on MRI. Further study is needed to identify risk factors for CNS deterioration among children with IOPD and develop interventions to prevent neurological decline.
Asunto(s)
Enfermedad del Almacenamiento de Glucógeno Tipo II , Niño , Masculino , Femenino , Humanos , Adolescente , Enfermedad del Almacenamiento de Glucógeno Tipo II/complicaciones , Enfermedad del Almacenamiento de Glucógeno Tipo II/diagnóstico por imagen , Enfermedad del Almacenamiento de Glucógeno Tipo II/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética , Convulsiones/diagnóstico por imagen , Convulsiones/etiología , Factores de Riesgo , Terapia de Reemplazo Enzimático/métodos , alfa-Glucosidasas/uso terapéuticoRESUMEN
Endogenous ochronosis, also known as alkaptonuria, is a rare disease known for its bluish-black discoloration of the skin, sclerae, and pinnae, as well as urine that turns black upon standing. Though rarely fatal, joint degradation is a common sequela, and many patients require multiple large joint arthroplasties throughout their lifetime. Though many aspects of the pathophysiological mechanisms of the disease have been described, questions remain, such as how the initiation of ochronotic pigmentation is prompted and the specific circumstances that make some tissues more resistant to pigmentation-related damage than others. In this report, we present the case of an 83-year-old female previously diagnosed with alkaptonuria including high-quality arthroscopic images displaying the fraying of articular cartilage. We also offer a summary of the latest literature on the pathophysiological mechanisms of the disease, including cellular-level changes observed in ochronotic chondrocytes, biochemical and mechanical alterations to the cartilaginous extracellular matrix, and patterns of pigmentation and joint degradation observed in humans and mice models. With these, we present an overview of the mechanisms of ochronotic chondropathy and joint degradation as the processes are currently understood. While alkaptonuria itself is rare, it has been termed a "fundamental disease," implying that its study and greater understanding have the potential to lead to insights in skeletal biology in general, as well as more common pathologies such as osteoarthritis and their potential treatment mechanisms.
RESUMEN
The formation and maintenance of the gross structure and microarchitecture of the human skeleton require the concerted functioning of a plethora of morphogenic signaling processes. Through recent discoveries in the field of genetics, numerous genotypic variants have been implicated in pathologic skeletal phenotypes and disorders arising from the disturbance of one or more of these processes. For example, total loss-of-function variants of LRP5 were found to be the cause of osteoporosis-pseudoglioma syndrome (OPPG). LRP5 encodes for the low-density lipoprotein receptor-related protein 5, a co-receptor in the canonical WNT-ß-catenin signaling pathway and a crucial protein involved in the formation and maintenance of homeostasis of the human skeleton. Beyond OPPG, other partial loss-of-function variants of LRP5 have been found to be associated with other low bone mass phenotypes and disorders, while LRP5 gain-of-function variants have been implicated in high bone mass phenotypes. This review introduces the roles that LRP5 plays in skeletal morphogenesis and discusses some of the structural consequences that result from abnormalities in LRP5. A greater understanding of how the LRP5 receptor functions in bone and other body tissues could provide insights into a variety of pathologies and their potential treatments, from osteoporosis and a variety of skeletal abnormalities to congenital disorders that can lead to lifelong disabilities.
Asunto(s)
Osteogénesis Imperfecta , Osteoporosis , Humanos , Densidad Ósea/genética , Osteoporosis/genética , Osteoporosis/complicaciones , Osteogénesis Imperfecta/genética , Huesos , Proteína-5 Relacionada con Receptor de Lipoproteína de Baja Densidad/genéticaRESUMEN
Familial exudative vitreoretinopathy (FEVR) is a genetic disorder whose presentation can include osteoporosis, multiple fractures, and incomplete retinal angiogenesis leading to retinal detachment and blindness if left untreated. Discussed herein are the cases of two pediatric siblings who presented to the orthopedic service with multiple fractures and, through interdisciplinary management, were diagnosed with FEVR and treated appropriately before permanent visual impairment. The skeletal manifestations of FEVR, which have not been explored in depth in prior literature, are described. One sibling presented to orthopedic services for evaluation of a closed distal radius fracture sustained while playing sports. A comprehensive history revealed he had suffered at least four appendicular fractures in his lifetime, and dual-energy x-ray absorptiometry (DEXA) scan revealed his bone density to be in the first percentile for his age. Concurrent evaluation of his younger sibling revealed a similar history of multiple fractures and low bone density. Referral to genetic services and ensuing whole-exome sequencing revealed a likely pathogenic variant in both siblings' LRP5 gene, the only known causative mutation for FEVR that leads to skeletal manifestations. While FEVR is well known in genetic and ophthalmologic settings, greater awareness of FEVR and other genetic disorders that predispose to fractures in pediatric populations is warranted in orthopedic settings. This will lead to reduced sequelae in pediatric patients with genetic disorders and improved interdisciplinary expertise. The story of these siblings illustrates that a high index of suspicion for genetic diseases is essential when treating children with osteoporosis and growth delays.
RESUMEN
We report a series of four unrelated adults with Smith-Magenis syndrome (SMS) and concomitant features of Birt-Hogg-Dubé (BHD) syndrome based upon haploinsufficiency for FLCN and characteristic renal cell carcinomas and/or evidence of cutaneous fibrofolliculomas. Three of the cases constitute the first known association of histopathologically verified characteristic BHD-associated renal tumors in adults with SMS; the fourth was identified to have histologically confirmed skin fibrofolliculomas. Molecular analysis documented second-hit FLCN mutations in two of the three cases with confirmed BHD renal pathology. These cases suggest the need to expand management recommendations for SMS to include kidney cancer surveillance starting at 20 years of age, as per the screening recommendations for BHD syndrome.
Asunto(s)
Síndrome de Birt-Hogg-Dubé , Carcinoma de Células Renales , Neoplasias Renales , Neoplasias Cutáneas , Síndrome de Smith-Magenis , Adulto , Humanos , Síndrome de Birt-Hogg-Dubé/complicaciones , Síndrome de Birt-Hogg-Dubé/diagnóstico , Síndrome de Birt-Hogg-Dubé/genética , Síndrome de Smith-Magenis/complicaciones , Detección Precoz del Cáncer , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genética , Neoplasias Renales/genética , Carcinoma de Células Renales/genética , Neoplasias Cutáneas/genéticaRESUMEN
Intellectual disability (ID) is a neurodevelopmental disorder frequently caused by monogenic defects. In this study, we collected 14 SEMA6B heterozygous variants in 16 unrelated patients referred for ID to different centers. Whereas, until now, SEMA6B variants have mainly been reported in patients with progressive myoclonic epilepsy, our study indicates that the clinical spectrum is wider and also includes non-syndromic ID without epilepsy or myoclonus. To assess the pathogenicity of these variants, selected mutated forms of Sema6b were overexpressed in Human Embryonic Kidney 293T (HEK293T) cells and in primary neuronal cultures. shRNAs targeting Sema6b were also used in neuronal cultures to measure the impact of the decreased Sema6b expression on morphogenesis and synaptogenesis. The overexpression of some variants leads to a subcellular mislocalization of SEMA6B protein in HEK293T cells and to a reduced spine density owing to loss of mature spines in neuronal cultures. Sema6b knockdown also impairs spine density and spine maturation. In addition, we conducted in vivo rescue experiments in chicken embryos with the selected mutated forms of Sema6b expressed in commissural neurons after knockdown of endogenous SEMA6B. We observed that expression of these variants in commissural neurons fails to rescue the normal axon pathway. In conclusion, identification of SEMA6B variants in patients presenting with an overlapping phenotype with ID and functional studies highlight the important role of SEMA6B in neuronal development, notably in spine formation and maturation and in axon guidance. This study adds SEMA6B to the list of ID-related genes.
Asunto(s)
Epilepsia , Discapacidad Intelectual , Semaforinas , Animales , Orientación del Axón , Embrión de Pollo , Espinas Dendríticas , Epilepsia/genética , Células HEK293 , Humanos , Discapacidad Intelectual/genética , Semaforinas/genéticaRESUMEN
The phenotypic variability associated with pathogenic variants in Lysine Acetyltransferase 6B (KAT6B, a.k.a. MORF, MYST4) results in several interrelated syndromes including Say-Barber-Biesecker-Young-Simpson Syndrome and Genitopatellar Syndrome. Here we present 20 new cases representing 10 novel KAT6B variants. These patients exhibit a range of clinical phenotypes including intellectual disability, mobility and language difficulties, craniofacial dysmorphology, and skeletal anomalies. Given the range of features previously described for KAT6B-related syndromes, we have identified additional phenotypes including concern for keratoconus, sensitivity to light or noise, recurring infections, and fractures in greater numbers than previously reported. We surveyed clinicians to qualitatively assess the ways families engage with genetic counselors upon diagnosis. We found that 56% (10/18) of individuals receive diagnoses before the age of 2 years (median age = 1.96 years), making it challenging to address future complications with limited accessible information and vast phenotypic severity. We used CRISPR to introduce truncating variants into the KAT6B gene in model cell lines and performed chromatin accessibility and transcriptome sequencing to identify key dysregulated pathways. This study expands the clinical spectrum and addresses the challenges to management and genetic counseling for patients with KAT6B-related disorders.
Asunto(s)
Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Histona Acetiltransferasas/genética , Mutación , Fenotipo , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Alelos , Blefarofimosis/diagnóstico , Blefarofimosis/genética , Estudios de Cohortes , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , Anomalías Craneofaciales/diagnóstico , Anomalías Craneofaciales/genética , Facies , Asesoramiento Genético , Sitios Genéticos , Genotipo , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Inestabilidad de la Articulación/diagnóstico , Inestabilidad de la Articulación/genética , Riñón/anomalías , Masculino , Rótula/anomalías , Trastornos Psicomotores/diagnóstico , Trastornos Psicomotores/genética , Escroto/anomalías , Anomalías Urogenitales/diagnóstico , Anomalías Urogenitales/genéticaRESUMEN
We report a case of confirmed Bosch-Boonstra-Schaaf optic atrophy syndrome presenting with suspected optic nerve hypoplasia, corpus callosum agenesis, and low levels of insulin-like growth factor 1. This patient's presentation demonstrates the clinical overlap of Bosch-Boonstra-Schaaf Optic atrophy syndrome with septo-optic dysplasia and the importance of genetic testing for correct diagnosis.
Asunto(s)
Discapacidad Intelectual , Atrofias Ópticas Hereditarias , Atrofia Óptica , Displasia Septo-Óptica , Factor de Transcripción COUP I , Niño , Humanos , Atrofias Ópticas Hereditarias/genética , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Displasia Septo-Óptica/diagnóstico , Displasia Septo-Óptica/genéticaRESUMEN
â¢Extrapulmonary lymphangioleiomyomatosis is rare and can be associated with tuberous sclerosis.â¢Recognition of lymphangioleiomyomatosis is important for early disease screening and genetic testing.â¢Lymphangioleiomyomatosis in lower uterine segment is very rare and can be overlooked.
RESUMEN
GEMIN5, an RNA-binding protein is essential for assembly of the survival motor neuron (SMN) protein complex and facilitates the formation of small nuclear ribonucleoproteins (snRNPs), the building blocks of spliceosomes. Here, we have identified 30 affected individuals from 22 unrelated families presenting with developmental delay, hypotonia, and cerebellar ataxia harboring biallelic variants in the GEMIN5 gene. Mutations in GEMIN5 perturb the subcellular distribution, stability, and expression of GEMIN5 protein and its interacting partners in patient iPSC-derived neurons, suggesting a potential loss-of-function mechanism. GEMIN5 mutations result in disruption of snRNP complex assembly formation in patient iPSC neurons. Furthermore, knock down of rigor mortis, the fly homolog of human GEMIN5, leads to developmental defects, motor dysfunction, and a reduced lifespan. Interestingly, we observed that GEMIN5 variants disrupt a distinct set of transcripts and pathways as compared to SMA patient neurons, suggesting different molecular pathomechanisms. These findings collectively provide evidence that pathogenic variants in GEMIN5 perturb physiological functions and result in a neurodevelopmental delay and ataxia syndrome.
Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Células Madre Pluripotentes Inducidas/metabolismo , Trastornos del Neurodesarrollo/metabolismo , Neuronas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/genética , Alelos , Secuencia de Aminoácidos , Animales , Preescolar , Discapacidades del Desarrollo/genética , Drosophila/genética , Drosophila/crecimiento & desarrollo , Femenino , Técnicas de Silenciamiento del Gen , Ontología de Genes , Células HEK293 , Humanos , Mutación con Pérdida de Función , Masculino , Hipotonía Muscular/genética , Disinergia Cerebelosa Mioclónica/genética , Trastornos del Neurodesarrollo/diagnóstico por imagen , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/fisiopatología , Linaje , Polimorfismo de Nucleótido Simple , RNA-Seq , Ribonucleoproteínas Nucleares Pequeñas/genética , Rigor Mortis/genética , Proteínas del Complejo SMN/metabolismoRESUMEN
Phosphatidylinositol Glycan Anchor Biosynthesis class H (PIGH) is an essential player in the glycosylphosphatidylinositol (GPI) synthesis, an anchor for numerous cell membrane-bound proteins. PIGH deficiency is a newly described and rare disorder associated with developmental delay, seizures and behavioral difficulties. Herein, we report three new unrelated families with two different bi-allelic PIGH variants, including one new variant p.(Arg163Trp) which seems associated with a more severe phenotype. The common clinical features in all affected individuals are developmental delay/intellectual disability and hypotonia. Variable clinical features include seizures, autism spectrum disorder, apraxia, severe language delay, dysarthria, feeding difficulties, facial dysmorphisms, microcephaly, strabismus, and musculoskeletal anomalies. The two siblings homozygous for the p.(Arg163Trp) variant have severe symptoms including profound psychomotor retardation, intractable seizures, multiple bone fractures, scoliosis, loss of independent ambulation, and delayed myelination on brain MRI. Serum iron levels were significantly elevated in one individual. All tested individuals with PIGH deficiency had normal alkaline phosphatase and CD16, a GPI-anchored protein (GPI-AP), was found to be decreased by 60% on granulocytes from one individual. This study expands the PIGH deficiency phenotype range toward the severe end of the spectrum with the identification of a novel pathogenic variant.
Asunto(s)
Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Trastornos del Neurodesarrollo/genética , Niño , Preescolar , Femenino , Humanos , Masculino , Linaje , Fenotipo , Adulto JovenRESUMEN
The focus of this article is to review the complex determinants of gender assignment in a child with a disorder of sex development using four different clinical cases. While the care of patients with DSD may be shared across several specialties and opinions regarding their management may vary, this may be further complicated by psychosocial, cultural and economic factors. In this regard, access to behavioral health specialists with experience and specialization in the treatment of patients with DSD should be a foundational component of the standard of care and can greatly assist in the complex decision-making regarding gender assignment. We recommend an individualized approach by a multidisciplinary team utilizing a range of evolving strategies, including outcome data (or lack thereof) to support families during the decision-making process.
Asunto(s)
Trastornos del Desarrollo Sexual , Niño , Trastornos del Desarrollo Sexual/diagnóstico , Trastornos del Desarrollo Sexual/terapia , Factores Económicos , Identidad de Género , Humanos , Desarrollo Sexual , EspecializaciónRESUMEN
BACKGROUND: Familial dysalbuminemic hyperthyroxinemia (FDH) is a rare autosomal dominant disorder whose clinical characteristics remain incompletely understood, we investigated the role of albumin gene mutation in relation to miscarriage rate in a large pedigree of FDH followed up for 4 years. PATIENTS AND METHODS: The proband and extended family with unexplained miscarriage and hyperthyroxinemia were identified and genotypes in candidate genes and thyroid function tests (TFTs), including changes in TFTs during pregnancy were comprehensively assessed. We also evaluated the development and growth of children in this large FDH pedigree during four years follow-up. RESULT: The R218S variant in the albumin gene was identified in the proband and her relatives with hyperthyroxinemia who were diagnosed as FDH. Among the family members who underwent TFTs, 11 of 17 (65%) had similar changes in levels of thyroid hormone, with an estimated FDH heritability of 86%. Moreover, 32% (95% CI 16-54%) of FDH women experienced miscarriages at a rate that was substantially higher than the spontaneous abortion rate reported in the general population in China (7-14%). During the follow-up, results revealed that free triiodothyronine (fT3) and thyroid stimulating hormone (TSH) levels were normal during the entire gestational period; comparing to their age-adjusted peers, both FDH affected and FDH unaffected children in this pedigree appeared to have lower body weight and height. CONCLUSIONS: Albumin gene variant (R218S) not only causes FDH but also may be associated with a higher risk of miscarriages, although the growth of their children appears not to be affected by the age of 2 years.
Asunto(s)
Aborto Espontáneo/genética , Hijo de Padres Discapacitados , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Hipertiroxinemia Disalbuminémica Familiar/genética , Albúmina Sérica Humana/genética , Aborto Espontáneo/diagnóstico , Preescolar , Femenino , Estudios de Seguimiento , Humanos , Hipertiroxinemia Disalbuminémica Familiar/diagnóstico , Masculino , Linaje , EmbarazoRESUMEN
CNOT1 is a member of the CCR4-NOT complex, which is a master regulator, orchestrating gene expression, RNA deadenylation, and protein ubiquitination. We report on 39 individuals with heterozygous de novo CNOT1 variants, including missense, splice site, and nonsense variants, who present with a clinical spectrum of intellectual disability, motor delay, speech delay, seizures, hypotonia, and behavioral problems. To link CNOT1 dysfunction to the neurodevelopmental phenotype observed, we generated variant-specific Drosophila models, which showed learning and memory defects upon CNOT1 knockdown. Introduction of human wild-type CNOT1 was able to rescue this phenotype, whereas mutants could not or only partially, supporting our hypothesis that CNOT1 impairment results in neurodevelopmental delay. Furthermore, the genetic interaction with autism-spectrum genes, such as ASH1L, DYRK1A, MED13, and SHANK3, was impaired in our Drosophila models. Molecular characterization of CNOT1 variants revealed normal CNOT1 expression levels, with both mutant and wild-type alleles expressed at similar levels. Analysis of protein-protein interactions with other members indicated that the CCR4-NOT complex remained intact. An integrated omics approach of patient-derived genomics and transcriptomics data suggested only minimal effects on endonucleolytic nonsense-mediated mRNA decay components, suggesting that de novo CNOT1 variants are likely haploinsufficient hypomorph or neomorph, rather than dominant negative. In summary, we provide strong evidence that de novo CNOT1 variants cause neurodevelopmental delay with a wide range of additional co-morbidities. Whereas the underlying pathophysiological mechanism warrants further analysis, our data demonstrate an essential and central role of the CCR4-NOT complex in human brain development.
Asunto(s)
Discapacidades del Desarrollo/genética , Expresión Génica/genética , Trastornos del Neurodesarrollo/genética , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , ARN/genética , Receptores CCR4/genética , Factores de Transcripción/genética , Alelos , Femenino , Variación Genética/genética , Haploinsuficiencia/genética , Heterocigoto , Humanos , Masculino , Malformaciones del Sistema Nervioso/genética , Fenotipo , Estabilidad ProteicaRESUMEN
OBJECTIVE: Microcephalic primordial dwarfism (MPD) is a group of clinically and genetically heterogeneous disorders which result in severe prenatal and postnatal growth failure. X-ray repair cross-complementing protein 4 (XRCC4) is a causative gene for an autosomal recessive form of MPD. The objective of this report is to describe novel XRCC4 mutations in a female infant with MPD, dilated cardiomyopathy, and subclinical hypothyroidism. METHODS: Genetic testing was performed using a comprehensive next generation sequencing panel for MPD, followed by targeted XRCC4 gene sequencing. RESULTS: We report the case of a 970-gram, 35-cm, female infant (weight z score -5.05, length z score -4.71) born at 36 weeks and 3 days gestation. Physical examination revealed triangular facies, micrognathism, clinodactyly, and second and third toe syndactyly. Initial echocardiogram at birth was normal. Follow-up echocardiogram at 60 days of life revealed dilated cardiomyopathy with moderate left ventricular systolic dysfunction (ejection fraction was 40 to 45%), and anticongestive therapy was initiated. Thyroid testing revealed subclinical hypothyroidism with elevated thyroid-stimulating hormone of 13.0 µIU/mL (reference range is 0.3 to 5.0 µIU/mL) and normal free thyroxine by dialysis of 1.6 ng/dL (reference range is 0.8 to 2.0 ng/dL). Levothyroxine was initiated. Postnatal growth remained poor (weight z score at 3 months -4.93, length z score at 3 months -6.48), including progressive microcephaly (head circumference z score at 3 months -10.94). Genetic testing revealed novel compound heterozygous XRCC4 variants in trans: c.628A>T and c.638+3A>G. The child ultimately had cardiopulmonary arrest and died at 6 months of life. CONCLUSION: Molecular diagnosis in MPD is key to defining the natural history, management, and prognosis for patients with these rare disorders.
RESUMEN
RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.