Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Development ; 151(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38063853

RESUMEN

High-sugar diets (HSDs) often lead to obesity and type 2 diabetes, both metabolic syndromes associated with stem cell dysfunction. However, it is unclear whether excess dietary sugar affects stem cells. Here, we report that HSD impairs stem cell function in the intestine and ovaries of female Drosophila prior to the onset of insulin resistance, a hallmark of type 2 diabetes. Although 1 week of HSD leads to obesity, impaired oogenesis and altered lipid metabolism, insulin resistance does not occur. HSD increases glucose uptake by germline stem cells (GSCs) and triggers reactive oxygen species-induced JNK signaling, which reduces GSC proliferation. Removal of excess sugar from the diet reverses these HSD-induced phenomena. A similar phenomenon is found in intestinal stem cells (ISCs), except that HSD disrupts ISC maintenance and differentiation. Interestingly, tumor-like GSCs and ISCs are less responsive to HSD, which may be because of their dependence on glycolytic metabolism and high energy demand, respectively. This study suggests that excess dietary sugar induces oxidative stress and damages stem cells before insulin resistance develops, a mechanism that may also occur in higher organisms.


Asunto(s)
Células Madre Adultas , Diabetes Mellitus Tipo 2 , Proteínas de Drosophila , Resistencia a la Insulina , Animales , Femenino , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Azúcares de la Dieta/metabolismo , Células Madre Adultas/metabolismo , Células Madre Neoplásicas/metabolismo , Obesidad
2.
Development ; 150(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36897355

RESUMEN

Neurogenesis is initiated by basic helix-loop-helix proneural proteins. Here, we show that Actin-related protein 6 (Arp6), a core component of the H2A.Z exchange complex SWR1, interacts with proneural proteins and is crucial for efficient onset of proneural protein target gene expression. Arp6 mutants exhibit reduced transcription in sensory organ precursors (SOPs) downstream of the proneural protein patterning event. This leads to retarded differentiation and division of SOPs and smaller sensory organs. These phenotypes are also observed in proneural gene hypomorphic mutants. Proneural protein expression is not reduced in Arp6 mutants. Enhanced proneural gene expression fails to rescue retarded differentiation in Arp6 mutants, suggesting that Arp6 acts downstream of or in parallel with proneural proteins. H2A.Z mutants display Arp6-like retardation in SOPs. Transcriptomic analyses demonstrate that loss of Arp6 and H2A.Z preferentially decreases expression of proneural protein-activated genes. H2A.Z enrichment in nucleosomes around the transcription start site before neurogenesis correlates highly with greater activation of proneural protein target genes by H2A.Z. We propose that upon proneural protein binding to E-box sites, H2A.Z incorporation around the transcription start site allows rapid and efficient activation of target genes, promoting rapid neural differentiation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Activación Transcripcional , Actinas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Histonas/metabolismo , Nucleosomas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
3.
Cell Rep ; 40(12): 111372, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36130510

RESUMEN

Golgi outposts (GOPs) in dendrites are known for their role in promoting branch extension, but whether GOPs have other functions is unclear. We found that terminal branches of Drosophila class IV dendritic arborization (C4da) neurons actively grow during the early third-instar (E3) larval stage but retract in the late third (L3) stage. Interestingly, the Fringe (Fng) glycosyltransferase localizes increasingly at GOPs in distal dendritic regions through the E3 to the L3 stage. Expression of the endopeptidase Furin 2 (Fur2), which proteolyzes and inactivates Fng, decreases from E3 to L3 in C4da neurons, thereby increasing Fng-positive GOPs in dendrites. The epidermal Delta ligand and neuronal Notch receptor, the substrate for Fng-mediated O-glycosylation, also negatively regulate dendrite growth. Fng inhibits actin dynamics in dendrites, linking dendritic branch retraction to suppression of the C4da-mediated thermal nociception response in late larval stages. Thus, Fng-positive GOPs function in dendrite retraction, which would add another function to the repertoire of GOPs in dendrite arborization.


Asunto(s)
Dendritas , Proteínas de Drosophila , Actinas/metabolismo , Animales , Dendritas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Furina/metabolismo , Glicosiltransferasas/metabolismo , Larva/metabolismo , Ligandos , Receptores Notch/metabolismo , Células Receptoras Sensoriales/metabolismo
4.
Development ; 149(16)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35899600

RESUMEN

Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) is involved in many biological functions. However, the mechanisms of PIP2 in collective cell migration remain elusive. This study highlights the regulatory role of cytidine triphosphate synthase (CTPsyn) in collective border cell migration through regulating the asymmetrical distribution of PIP2. We demonstrated that border cell clusters containing mutant CTPsyn cells suppressed migration. CTPsyn was co-enriched with Actin at the leading edge of the Drosophila border cell cluster where PIP2 was enriched, and this enrichment depended on the CTPsyn activity. Genetic interactions of border cell migration were found between CTPsyn mutant and genes in PI biosynthesis. The CTPsyn reduction resulted in loss of the asymmetric activity of endocytosis recycling. Also, genetic interactions were revealed between components of the exocyst complex and CTPsyn mutant, indicating that CTPsyn activity regulates the PIP2-related asymmetrical exocytosis activity. Furthermore, CTPsyn activity is essential for RTK-polarized distribution in the border cell cluster. We propose a model in which CTPsyn activity is required for the asymmetrical generation of PIP2 to enrich RTK signaling through endocytic recycling in collective cell migration.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Ligasas de Carbono-Nitrógeno , Movimiento Celular/genética , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo
5.
Sci Rep ; 10(1): 11674, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32669615

RESUMEN

Stem cell activity and cell differentiation is robustly influenced by the nutrient availability in the gonads. The signal that connects nutrient availability to gonadal stem cell activity remains largely unknown. In this study, we show that tumor necrosis factor Eiger (Egr) is upregulated in testicular smooth muscles as a response to prolonged protein starvation in Drosophila testis. While Egr is not essential for starvation-induced changes in germline and somatic stem cell numbers, Egr and its receptor Grindelwald influence the recovery dynamics of somatic cyst stem cells (CySCs) upon protein refeeding. Moreover, Egr is also involved in the refeeding-induced, ectopic expression of the CySC self-renewal protein and the accumulation of early germ cells. Egr primarily acts through the Jun N-terminal kinase (JNK) signaling in Drosophila. We show that inhibition of JNK signaling in cyst cells suppresses the refeeding-induced abnormality in both somatic and germ cells. In conclusion, our study reveals both beneficial and detrimental effects of Egr upregulation in the recovery of stem cells and spermatogenesis from prolonged protein starvation.


Asunto(s)
Proteínas en la Dieta/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas de la Membrana/genética , Espermatozoides/metabolismo , Células Madre/metabolismo , Animales , Diferenciación Celular , Proteínas en la Dieta/administración & dosificación , Proteínas de Drosophila/agonistas , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Ingestión de Alimentos/fisiología , Regulación del Desarrollo de la Expresión Génica , Homeostasis/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/metabolismo , Espermatogénesis/efectos de los fármacos , Espermatogénesis/genética , Espermatozoides/citología , Espermatozoides/efectos de los fármacos , Inanición/genética , Inanición/metabolismo , Nicho de Células Madre/genética , Células Madre/citología , Células Madre/efectos de los fármacos , Testículo/citología , Testículo/efectos de los fármacos , Testículo/crecimiento & desarrollo , Testículo/metabolismo
6.
Nat Commun ; 11(1): 3147, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32561720

RESUMEN

Transposons are known to participate in tissue aging, but their effects on aged stem cells remain unclear. Here, we report that in the Drosophila ovarian germline stem cell (GSC) niche, aging-related reductions in expression of Piwi (a transposon silencer) derepress retrotransposons and cause GSC loss. Suppression of Piwi expression in the young niche mimics the aged niche, causing retrotransposon depression and coincident activation of Toll-mediated signaling, which promotes Glycogen synthase kinase 3 activity to degrade ß-catenin. Disruption of ß-catenin-E-cadherin-mediated GSC anchorage then results in GSC loss. Knocking down gypsy (a highly active retrotransposon) or toll, or inhibiting reverse transcription in the piwi-deficient niche, suppresses GSK3 activity and ß-catenin degradation, restoring GSC-niche attachment. This retrotransposon-mediated impairment of aged stem cell maintenance may have relevance in many tissues, and could represent a viable therapeutic target for aging-related tissue degeneration.


Asunto(s)
Proteínas Argonautas/metabolismo , Senescencia Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Células Germinativas/metabolismo , Animales , Proteínas Argonautas/genética , Cadherinas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Silenciador del Gen , Glucógeno Sintasa Quinasa 3/metabolismo , Ovario/citología , Ovario/metabolismo , Retroelementos/genética , Transducción de Señal , Nicho de Células Madre/fisiología , Células Madre/metabolismo , Receptores Toll-Like/metabolismo , beta Catenina/metabolismo
7.
PLoS Genet ; 15(7): e1008062, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31295251

RESUMEN

Stem cells rely on instructive cues from their environment. Alterations in microenvironments might contribute to tissue dysfunction and disease pathogenesis. Germline stem cells (GSCs) and cyst stem cells (CySC) in Drosophila testes are normally maintained in the apical area by the testicular hub. In this study, we found that reproduction leads to accumulation of early differentiating daughters of CySCs and GSCs in the testes of aged male flies, due to hyperactivation of Jun-N-terminal kinase (JNK) signaling to maintain self-renewal gene expression in the differentiating cyst cells. JNK activity is normally required to maintain CySCs in the apical niche. A muscle sheath surrounds the Drosophila testis to maintain its long coiled structure. Importantly, reproduction triggers accumulation of the tumor necrosis factor (TNF) Eiger in the testis muscle to activate JNK signaling via the TNF receptor Grindelwald in the cyst cells. Reducing Eiger activity in the testis muscle sheath suppressed reproduction-induced differentiation defects, but had little effect on testis homeostasis of unmated males. Our results reveal that reproduction in males provokes a dramatic shift in the testicular microenvironment, which impairs tissue homeostasis and spermatogenesis in the testes.


Asunto(s)
Células Madre Germinales Adultas/citología , Drosophila melanogaster/fisiología , Reproducción , Células Madre Germinales Adultas/metabolismo , Animales , Diferenciación Celular , Autorrenovación de las Células , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Femenino , Homeostasis , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas de la Membrana/metabolismo , Conducta Sexual Animal , Espermatogénesis , Nicho de Células Madre , Testículo/citología , Testículo/metabolismo
8.
Genetics ; 206(4): 1939-1949, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28588035

RESUMEN

A key aspect of germ cell development is to establish germline sexual identity and initiate a sex-specific developmental program to promote spermatogenesis or oogenesis. Previously, we have identified the histone reader Plant Homeodomain Finger 7 (PHF7) as an important regulator of male germline identity. To understand how PHF7 directs sexual differentiation of the male germline, we investigated the downstream targets of PHF7 by combining transcriptome analyses, which reveal genes regulated by Phf7, with genomic profiling of histone H3K4me2, the chromatin mark that is bound by PHF7. Through these genomic experiments, we identify a novel spermatocyte factor Receptor Accessory Protein Like 1 (REEPL1) that can promote spermatogenesis and whose expression is kept off by PHF7 in the spermatogonial stage. Loss of Reepl1 significantly rescues the spermatogenesis defects in Phf7 mutants, indicating that regulation of Reepl1 is an essential aspect of PHF7 function. Further, increasing REEPL1 expression facilitates spermatogenic differentiation. These results indicate that PHF7 controls spermatogenesis by regulating the expression patterns of important male germline genes.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Homeodominio/genética , Espermatocitos/metabolismo , Espermatogénesis/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , Espermatocitos/citología
9.
Elife ; 62017 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-28489002

RESUMEN

Synapse formation and growth are tightly controlled processes. How synaptic growth is terminated after reaching proper size remains unclear. Here, we show that Leon, the Drosophila USP5 deubiquitinase, controls postsynaptic growth. In leon mutants, postsynaptic specializations of neuromuscular junctions are dramatically expanded, including the subsynaptic reticulum, the postsynaptic density, and the glutamate receptor cluster. Expansion of these postsynaptic features is caused by a disruption of ubiquitin homeostasis with accumulation of free ubiquitin chains and ubiquitinated substrates in the leon mutant. Accumulation of Ubiquilin (Ubqn), the ubiquitin receptor whose human homolog ubiquilin 2 is associated with familial amyotrophic lateral sclerosis, also contributes to defects in postsynaptic growth and ubiquitin homeostasis. Importantly, accumulations of postsynaptic proteins cause different aspects of postsynaptic overgrowth in leon mutants. Thus, the deubiquitinase Leon maintains ubiquitin homeostasis and proper Ubqn levels, preventing postsynaptic proteins from accumulation to confine postsynaptic growth.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Densidad Postsináptica/metabolismo , Receptores de Glutamato/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Ubiquitina/metabolismo , Animales , Drosophila , Homeostasis
10.
Aging Cell ; 14(1): 25-34, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25470527

RESUMEN

Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age-dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC-male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging.


Asunto(s)
Envejecimiento/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Células Germinativas/patología , Insulina/metabolismo , Células Madre Neoplásicas/metabolismo , Transducción de Señal , Animales , Biomarcadores/metabolismo , Recuento de Células , Proliferación Celular , ADN/metabolismo , Daño del ADN , Femenino , Citometría de Flujo , Fase G1 , Masculino , Ovario/patología , Fase S , Nicho de Células Madre
11.
PLoS Genet ; 10(11): e1004760, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25393278

RESUMEN

During development, neural competence is conferred and maintained by integrating spatial and temporal regulations. The Drosophila sensory bristles that detect mechanical and chemical stimulations are arranged in stereotypical positions. The anterior wing margin (AWM) is arrayed with neuron-innervated sensory bristles, while posterior wing margin (PWM) bristles are non-innervated. We found that the COP9 signalosome (CSN) suppresses the neural competence of non-innervated bristles at the PWM. In CSN mutants, PWM bristles are transformed into neuron-innervated, which is attributed to sustained expression of the neural-determining factor Senseless (Sens). The CSN suppresses Sens through repression of the ecdysone signaling target gene broad (br) that encodes the BR-Z1 transcription factor to activate sens expression. Strikingly, CSN suppression of BR-Z1 is initiated at the prepupa-to-pupa transition, leading to Sens downregulation, and termination of the neural competence of PWM bristles. The role of ecdysone signaling to repress br after the prepupa-to-pupa transition is distinct from its conventional role in activation, and requires CSN deneddylating activity and multiple cullins, the major substrates of deneddylation. Several CSN subunits physically associate with ecdysone receptors to represses br at the transcriptional level. We propose a model in which nuclear hormone receptors cooperate with the deneddylation machinery to temporally shutdown downstream target gene expression, conferring a spatial restriction on neural competence at the PWM.


Asunto(s)
Proteínas de Drosophila/genética , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Péptido Hidrolasas/genética , Factores de Transcripción/genética , Alas de Animales/crecimiento & desarrollo , Animales , Complejo del Señalosoma COP9 , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Ecdisona/genética , Ecdisona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Complejos Multiproteicos/metabolismo , Mutación , Neuronas/metabolismo , Proteínas Nucleares/metabolismo , Péptido Hidrolasas/metabolismo , Factores de Transcripción/metabolismo
12.
J Cell Sci ; 127(Pt 1): 182-90, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24190881

RESUMEN

Basic helix-loop-helix (bHLH) proneural proteins promote neurogenesis through transcriptional regulation. Although much is known about the tissue-specific regulation of proneural gene expression, how proneural proteins interact with transcriptional machinery to activate downstream target genes is less clear. Drosophila proneural proteins Achaete (Ac) and Scute (Sc) induce external sensory organ formation by activating neural precursor gene expression. Through co-immunoprecipitation and mass spectrometric analyses, we found that nuclear but not cytoplasmic actin associated with the Ac and Sc proteins in Drosophila S2 cells. Daughterless (Da), the common heterodimeric partner of Drosophila bHLH proteins, was observed to associate with nuclear actin through proneural proteins. A yeast two-hybrid assay revealed that the binding specificity between actin and Ac or Sc was conserved in yeast nuclei without the presence of additional Drosophila factors. We further show that actin is required in external sensory organ formation. Reduction in actin gene activity impaired proneural-protein-dependent expression of the neural precursor genes, as well as formation of neural precursors. Furthermore, increased nuclear actin levels, obtained by expression of nucleus-localized actin, elevated Ac-Da-dependent gene transcription as well as Ac-mediated external sensory organ formation. Taken together, our in vivo and in vitro observations suggest a novel link for actin in proneural-protein-mediated transcriptional activation and neural precursor differentiation.


Asunto(s)
Actinas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Núcleo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Sistema Nervioso/metabolismo , Factores de Transcripción/metabolismo , Actinas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Línea Celular , Citoplasma/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Morfogénesis/genética , Sistema Nervioso/crecimiento & desarrollo , Neuronas/citología , Neuronas/metabolismo , Unión Proteica , Transducción de Señal , Factores de Transcripción/genética , Transcripción Genética , Técnicas del Sistema de Dos Híbridos
13.
Dev Biol ; 383(1): 106-20, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-23988579

RESUMEN

Germline stem cells (GSCs) produce gametes throughout the reproductive life of many animals, and intensive studies have revealed critical roles of BMP signaling to maintain GSC self-renewal in Drospophila adult gonads. Here, we show that BMP signaling is downregulated as testes develop and this regulation controls testis growth, stem cell number, and the number of spermatogonia divisions. Phosphorylated Mad (pMad), the activated Drosophila Smad in germ cells, was restricted from anterior germ cells to GSCs and hub-proximal cells during early larval development. pMad levels in GSCs were then dramatically downregulated from early third larval instar (L3) to late L3, and maintained at low levels in pupal and adult GSCs. The spatial restriction and temporal down-regulation of pMad, reflecting the germ cell response to BMP signaling activity, required action in germ cells of E3 ligase activity of HECT domain protein Smurf. Analyses of Smurf mutant testes and dosage-dependent genetic interaction between Smurf and mad indicated that pMad downregulation was required for both the normal decrease in stem cell number during testis maturation in the pupal stage, and for normal limit of four rounds of spermatogonia cell division for control of germ cell numbers and testis size. Smurf protein was expressed at a constant low level in GSCs and spermatogonia during development. Rescue experiments showed that expression of exogenous Smurf protein in early germ cells promoted pMad downregulation in GSCs in a stage-dependent but concentration-independent manner, suggesting that the competence of Smurf to attenuate response to BMP signaling may be regulated during development. Taken together, our work reveals a critical role for differential attenuation of the response to BMP signaling in GSCs and early germ cells for control of germ cell number and gonad growth during development.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Transducción de Señal/fisiología , Células Madre/metabolismo , Testículo/crecimiento & desarrollo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Western Blotting , Cartilla de ADN/genética , Hibridación in Situ , Larva/crecimiento & desarrollo , Masculino , Microscopía Fluorescente , Proteolisis , Testículo/citología , Testículo/metabolismo
14.
Neuron ; 72(2): 285-99, 2011 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-22017988

RESUMEN

VIDEO ABSTRACT: During development, dendrites arborize in a field several hundred folds of their soma size, a process regulated by intrinsic transcription program and cell adhesion molecule (CAM)-mediated interaction. However, underlying cellular machineries that govern distal higher-order dendrite extension remain largely unknown. Here, we show that Nak, a clathrin adaptor-associated kinase, promotes higher-order dendrite growth through endocytosis. In nak mutants, both the number and length of higher-order dendrites are reduced, which are phenocopied by disruptions of clathrin-mediated endocytosis. Nak interacts genetically with components of the endocytic pathway, colocalizes with clathrin puncta, and is required for dendritic localization of clathrin puncta. More importantly, these Nak-containing clathrin structures preferentially localize to branching points and dendritic tips that are undergoing active growth. We present evidence that the Drosophila L1-CAM homolog Neuroglian is a relevant cargo of Nak-dependent internalization, suggesting that localized clathrin-mediated endocytosis of CAMs facilitates the extension of nearby higher-order dendrites.


Asunto(s)
Clatrina/metabolismo , Dendritas/metabolismo , Proteínas de Drosophila/metabolismo , Endocitosis/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Animales Modificados Genéticamente , Moléculas de Adhesión Celular Neuronal/genética , Moléculas de Adhesión Celular Neuronal/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas Serina-Treonina Quinasas/genética
15.
J Biomed Sci ; 18: 42, 2011 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-21682860

RESUMEN

BACKGROUND: The conserved Notch signaling pathway regulates cell fate decisions and maintains stem cells in multicellular organisms. Up-regulation of Notch signaling is observed in several types of cancer and is causally involved in proliferation and survival of cancer cells. Thus, it is of great interest to look for anti-Notch reagents for therapeutic purposes. In model animal Drosophila, Notch signaling restricts selection of sensory organ precursors (SOPs) during external sensory (ES) organ development. To look for novel genes that can suppress Notch signaling, we performed a gain-of-function modifier screen to look for genes that enhance the phenotype of ectopic ES organs induced by overexpression of phyllopod, a gene required for SOP specification. RESULTS: From the gain-of-function screen, we discovered that overexpression of polished rice/tarsal-less (pri/tal) increases the numbers of ES organs as well as SOPs. pri/tal is a polycistronic gene that contains four short open reading frames encoding three 11-amino acid and one 32-amino acid peptides. Ectopic expression of the 11 amino-acid peptides recapitulates the pri/tal misexpression phenotype in ectopic ES organ formation. In situ hybridization experiment reveals that pri/tal mRNA is expressed in the SOPs of the chemosensory organs and the stretch-sensing chordotonal organs.In Drosophila wing development, the Notch signaling pathway mediates the formation of the dorsal-ventral (DV) compartmental boundary and the restriction of the vein width from the primordial veins, the proveins. We also found that pri/tal mRNA is expressed in the DV boundary and the longitudinal proveins, and overexpression of Pri/Tal peptides disrupts the DV boundary formation and helps to expand the width of the wing vein. Genetic analyses further show that a Notch loss-of-function allele strongly enhances these two phenotypes. Cut and E(spl)mß are target genes of the Notch pathway in DV boundary formation and vein specification, respectively. We also found that overexpression of Pri/Tal peptides abolishes Cut expression and co-expression of Pri/Tal peptides with phyl strongly reduces E(spl)mß expression. CONCLUSIONS: We show for the first time that the overexpression of Pri/Tal 11-amino acid peptides disrupts multiple Notch-mediated processes and reduces Notch target gene expression in Drosophila, suggesting that these peptides have novel antagonistic activity to the Notch pathway. Thus, our discovery might provide insights into designing new therapeutic reagents for Notch-related diseases.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expresión Génica/efectos de los fármacos , Péptidos/metabolismo , Receptores Notch/genética , Transducción de Señal , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crecimiento & desarrollo , Descubrimiento de Drogas , Femenino , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Receptores Notch/metabolismo , Órganos de los Sentidos/crecimiento & desarrollo , Transaldolasa/genética , Transaldolasa/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Alas de Animales/crecimiento & desarrollo
16.
Nat Commun ; 2: 182, 2011 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-21304511

RESUMEN

The Hedgehog (Hh) morphogen directs distinct cell responses according to its distinct signalling levels. Hh signalling stabilizes transcription factor cubitus interruptus (Ci) by prohibiting SCF(Slimb)-dependent ubiquitylation and proteolysis of Ci. How graded Hh signalling confers differential SCF(Slimb)-mediated Ci proteolysis in responding cells remains unclear. Here, we show that in COP9 signalosome (CSN) mutants, in which deneddylation of SCF(Slimb) is inactivated, Ci is destabilized in low-to-intermediate Hh signalling cells. As a consequence, expression of the low-threshold Hh target gene dpp is disrupted, highlighting the critical role of CSN deneddylation on low-to-intermediate Hh signalling response. The status of Ci phosphorylation and the level of E1 ubiquitin-activating enzyme are tightly coupled to this CSN regulation. We propose that the affinity of substrate-E3 interaction, ligase activity and E1 activity are three major determinants for substrate ubiquitylation and thereby substrate degradation in vivo.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Hedgehog/metabolismo , Complejos Multiproteicos/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Ubiquitinas/metabolismo , Animales , Complejo del Señalosoma COP9 , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Proteína NEDD8 , Fosforilación , Alas de Animales/crecimiento & desarrollo , Alas de Animales/metabolismo
17.
Chang Gung Med J ; 32(5): 494-8, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19840506

RESUMEN

In bacteria and archaea, many functionally related genes are organized into operons in order to be transcribed and translated simultaneously. Operons are rarely seen in eukaryotes except for the Trypanosome and nematode, in which they are first transcribed into polycistronic transcripts but then processed into individual mature mRNAs. Recently, several researchers described the findings of polycistronic transcripts also in insects, which revised the previous thoughts that polycistronic genes were absent or few in eukaryotes. Similar to prokaryotic operons, the encoded peptides or proteins are translated simultaneously from a single polycistronic mRNA, providing new insights into the evolution of polycistronic genes. More interestingly, one type of the newly identified polycistronic genes encodes biologically important peptides composed of as few as 11 amino acids. These new findings will spur scientists to identify more small peptides in genome-solved organisms, and change the definition of coding sequences in genomic annotation.


Asunto(s)
Eucariontes/genética , ARN Mensajero/genética , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans/genética , Genes , Insectos/genética , Datos de Secuencia Molecular , Operón
18.
Development ; 135(18): 3021-30, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18701547

RESUMEN

Neurogenesis requires precise control of cell specification and division. In Drosophila, the timing of cell division of the sensory organ precursor (SOP) is under strict temporal control. But how the timing of mitotic entry is determined remains poorly understood. Here, we present evidence that the timing of the G2-M transition is determined by when proneural proteins are degraded from SOPs. This process requires the E3 ubiquitin ligase complex, including the RING protein Sina and the adaptor Phyl. In phyl mutants, proneural proteins accumulate, causing delay or arrest in the G2-M transition. The G2-M defect in phyl mutants is rescued by reducing the ac and sc gene doses. Misexpression of phyl downregulates proneural protein levels in a sina-dependent manner. Phyl directly associates with proneural proteins to act as a bridge between proneural proteins and Sina. As phyl is a direct transcriptional target of Ac and Sc, our data suggest that, in addition to mediating cell cycle arrest, proneural protein initiates a negative-feedback regulation to time the mitotic entry of neural precursors.


Asunto(s)
Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Sistema Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Drosophila/fisiología , Proteínas de Drosophila/genética , Genes de Insecto , Glutatión Transferasa/metabolismo , Hibridación in Situ , Mutación , Proteínas Nucleares/genética , Proteínas Recombinantes de Fusión/metabolismo , Ubiquitina-Proteína Ligasas/genética
19.
J Biomed Sci ; 14(4): 467-73, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17357812

RESUMEN

A key issue in development is how to specify single isolated precursor cells to adopt a distinct fate from a group of naive cells. Studies on the development of Drosophila external sensory (ES) organs have revealed multiple mechanisms to specify single sensory organ precursors (SOPs) from clusters of cells with equivalent neural potential. Initially single SOPs are selected in part through cell-cell competition from clusters of ectodermal cells that express proneural proteins. To reinforce the singularity, lateral inhibition through the Delta/Notch system and feedback regulations lead to exclusive expression of proneural proteins in SOPs. As transcriptional activators, proneural proteins execute a genetic program in SOP cells for the development of an eventually ES organ. In this article, we will summarize recent advances on how transcriptional regulation, protein degradation, endocytosis and gene silencing by microRNA participate in SOP specification.


Asunto(s)
Neuronas Aferentes/citología , Células Madre/metabolismo , Animales , Diferenciación Celular , Linaje de la Célula , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Endocitosis , Regulación del Desarrollo de la Expresión Génica , Silenciador del Gen , MicroARNs/metabolismo , Modelos Biológicos , Neuronas Aferentes/metabolismo , Transcripción Genética
20.
Proc Natl Acad Sci U S A ; 101(22): 8378-83, 2004 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-15148389

RESUMEN

Proneural basic helix-loop-helix (bHLH) proteins initiate neurogenesis in both vertebrates and invertebrates. The Drosophila Achaete (Ac) and Scute (Sc) proteins are among the first identified members of the large bHLH proneural protein family. phyllopod (phyl), encoding an ubiquitin ligase adaptor, is required for ac- and sc-dependent external sensory (ES) organ development. Expression of phyl is directly activated by Ac and Sc. Forced expression of phyl rescues ES organ formation in ac and sc double mutants. phyl and senseless, encoding a Zn-finger transcriptional factor, depend on each other in ES organ development. Our results provide the first example that bHLH proneural proteins promote neurogenesis through regulation of protein degradation.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/embriología , Regulación del Desarrollo de la Expresión Génica , Neuronas/fisiología , Proteínas Nucleares/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Diferenciación Celular/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/genética , Secuencias Hélice-Asa-Hélice , Morfogénesis/fisiología , Mutación , Neuronas/citología , Proteínas Nucleares/genética , Células Fotorreceptoras de Invertebrados/anatomía & histología , Células Fotorreceptoras de Invertebrados/embriología , Células Fotorreceptoras de Invertebrados/metabolismo , Regiones Promotoras Genéticas , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transgenes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA