Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
JAMA Cardiol ; 8(8): 721-731, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37405741

RESUMEN

Importance: Nonsyndromic bicuspid aortic valve (nsBAV) is the most common congenital heart valve malformation. BAV has a heritable component, yet only a few causative genes have been identified; understanding BAV genetics is a key point in developing personalized medicine. Objective: To identify a new gene for nsBAV. Design, Setting, and Participants: This was a comprehensive, multicenter, genetic association study based on candidate gene prioritization in a familial cohort followed by rare and common association studies in replication cohorts. Further validation was done using in vivo mice models. Study data were analyzed from October 2019 to October 2022. Three cohorts of patients with BAV were included in the study: (1) the discovery cohort was a large cohort of inherited cases from 29 pedigrees of French and Israeli origin; (2) the replication cohort 1 for rare variants included unrelated sporadic cases from various European ancestries; and (3) replication cohort 2 was a second validation cohort for common variants in unrelated sporadic cases from Europe and the US. Main Outcomes and Measures: To identify a candidate gene for nsBAV through analysis of familial cases exome sequencing and gene prioritization tools. Replication cohort 1 was searched for rare and predicted deleterious variants and genetic association. Replication cohort 2 was used to investigate the association of common variants with BAV. Results: A total of 938 patients with BAV were included in this study: 69 (7.4%) in the discovery cohort, 417 (44.5%) in replication cohort 1, and 452 (48.2%) in replication cohort 2. A novel human nsBAV gene, MINDBOMB1 homologue MIB1, was identified. MINDBOMB1 homologue (MIB1) is an E3-ubiquitin ligase essential for NOTCH-signal activation during heart development. In approximately 2% of nsBAV index cases from the discovery and replication 1 cohorts, rare MIB1 variants were detected, predicted to be damaging, and were significantly enriched compared with population-based controls (2% cases vs 0.9% controls; P = .03). In replication cohort 2, MIB1 risk haplotypes significantly associated with nsBAV were identified (permutation test, 1000 repeats; P = .02). Two genetically modified mice models carrying Mib1 variants identified in our cohort showed BAV on a NOTCH1-sensitized genetic background. Conclusions and Relevance: This genetic association study identified the MIB1 gene as associated with nsBAV. This underscores the crucial role of the NOTCH pathway in the pathophysiology of BAV and its potential as a target for future diagnostic and therapeutic intervention.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Transducción de Señal , Ubiquitina-Proteína Ligasas , Receptores Notch/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Estudios de Asociación Genética , Humanos
2.
Circulation ; 147(1): 47-65, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36325906

RESUMEN

BACKGROUND: The complex genetics underlying human cardiac disease is evidenced by its heterogenous manifestation, multigenic basis, and sporadic occurrence. These features have hampered disease modeling and mechanistic understanding. Here, we show that 2 structural cardiac diseases, left ventricular noncompaction (LVNC) and bicuspid aortic valve, can be caused by a set of inherited heterozygous gene mutations affecting the NOTCH ligand regulator MIB1 (MINDBOMB1) and cosegregating genes. METHODS: We used CRISPR-Cas9 gene editing to generate mice harboring a nonsense or a missense MIB1 mutation that are both found in LVNC families. We also generated mice separately carrying these MIB1 mutations plus 5 additional cosegregating variants in the ASXL3, APCDD1, TMX3, CEP192, and BCL7A genes identified in these LVNC families by whole exome sequencing. Histological, developmental, and functional analyses of these mouse models were carried out by echocardiography and cardiac magnetic resonance imaging, together with gene expression profiling by RNA sequencing of both selected engineered mouse models and human induced pluripotent stem cell-derived cardiomyocytes. Potential biochemical interactions were assayed in vitro by coimmunoprecipitation and Western blot. RESULTS: Mice homozygous for the MIB1 nonsense mutation did not survive, and the mutation caused LVNC only in heteroallelic combination with a conditional allele inactivated in the myocardium. The heterozygous MIB1 missense allele leads to bicuspid aortic valve in a NOTCH-sensitized genetic background. These data suggest that development of LVNC is influenced by genetic modifiers present in affected families, whereas valve defects are highly sensitive to NOTCH haploinsufficiency. Whole exome sequencing of LVNC families revealed single-nucleotide gene variants of ASXL3, APCDD1, TMX3, CEP192, and BCL7A cosegregating with the MIB1 mutations and LVNC. In experiments with mice harboring the orthologous variants on the corresponding Mib1 backgrounds, triple heterozygous Mib1 Apcdd1 Asxl3 mice showed LVNC, whereas quadruple heterozygous Mib1 Cep192 Tmx3;Bcl7a mice developed bicuspid aortic valve and other valve-associated defects. Biochemical analysis suggested interactions between CEP192, BCL7A, and NOTCH. Gene expression profiling of mutant mouse hearts and human induced pluripotent stem cell-derived cardiomyocytes revealed increased cardiomyocyte proliferation and defective morphological and metabolic maturation. CONCLUSIONS: These findings reveal a shared genetic substrate underlying LVNC and bicuspid aortic valve in which MIB1-NOTCH variants plays a crucial role in heterozygous combination with cosegregating genetic modifiers.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Cardiomiopatías , Cardiopatías Congénitas , Células Madre Pluripotentes Inducidas , Humanos , Animales , Ratones , Cardiopatías Congénitas/complicaciones , Cardiomiopatías/etiología , Miocitos Cardíacos , Válvula Aórtica/diagnóstico por imagen , Factores de Transcripción , Proteínas Cromosómicas no Histona
3.
Sci Adv ; 7(46): eabj5445, 2021 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-34767447

RESUMEN

Mutations in the G protein­coupled receptor GPR126/ADGRG6 cause human diseases, including defective peripheral nervous system (PNS) myelination. To study GPR126 function, we generated new genetic mice and zebrafish models. Murine Gpr126 is expressed in developing heart endocardium, and global Gpr126 inactivation is embryonically lethal, with mutants having thin-walled ventricles but unaffected heart patterning or maturation. Endocardial-specific Gpr126 deletion does not affect heart development or function, and transgenic endocardial GPR126 expression fails to rescue lethality in Gpr126-null mice. Zebrafish gpr126 mutants display unaffected heart development. Gpr126 is also expressed in placental trophoblast giant cells. Gpr126-null mice with a heterozygous placenta survive but exhibit GPR126-defective PNS phenotype. In contrast, Gpr126-null embryos with homozygous mutant placenta die but are rescued by placental GPR126 expression. Gpr126-deficient placentas display down-regulation of preeclampsia markers Mmp9, Cts7, and Cts8. We propose that the placenta-heart axis accounts for heart abnormalities secondary to placental defects in Gpr126 mutants.

4.
Elife ; 82019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31789590

RESUMEN

Coronaries are essential for myocardial growth and heart function. Notch is crucial for mouse embryonic angiogenesis, but its role in coronary development remains uncertain. We show Jag1, Dll4 and activated Notch1 receptor expression in sinus venosus (SV) endocardium. Endocardial Jag1 removal blocks SV capillary sprouting, while Dll4 inactivation stimulates excessive capillary growth, suggesting that ligand antagonism regulates coronary primary plexus formation. Later endothelial ligand removal, or forced expression of Dll4 or the glycosyltransferase Mfng, blocks coronary plexus remodeling, arterial differentiation, and perivascular cell maturation. Endocardial deletion of Efnb2 phenocopies the coronary arterial defects of Notch mutants. Angiogenic rescue experiments in ventricular explants, or in primary human endothelial cells, indicate that EphrinB2 is a critical effector of antagonistic Dll4 and Jag1 functions in arterial morphogenesis. Thus, coronary arterial precursors are specified in the SV prior to primary coronary plexus formation and subsequent arterial differentiation depends on a Dll4-Jag1-EphrinB2 signaling cascade.


Asunto(s)
Vasos Coronarios/crecimiento & desarrollo , Vasos Coronarios/metabolismo , Efrina-B2/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína Jagged-1/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Animales , Endocardio/metabolismo , Endotelio Vascular/metabolismo , Ventrículos Cardíacos/crecimiento & desarrollo , Ventrículos Cardíacos/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología , Ligandos , Ratones , Morfogénesis , Mutación/genética , Factores de Transcripción NFATC/metabolismo , Neovascularización Fisiológica , Receptores Notch/metabolismo , Estrés Fisiológico , Transcriptoma/genética , Remodelación Vascular
5.
Mol Cell Proteomics ; 18(9): 1782-1795, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31249105

RESUMEN

The endocardium is a specialized endothelium that lines the inner surface of the heart. Functional studies in mice and zebrafish have established that the endocardium is a source of instructive signals for the development of cardiac structures, including the heart valves and chambers. Here, we characterized the NOTCH-dependent endocardial secretome by manipulating NOTCH activity in mouse embryonic endocardial cells (MEEC) followed by mass spectrometry-based proteomics. We profiled different sets of soluble factors whose secretion not only responds to NOTCH activation but also shows differential ligand specificity, suggesting that ligand-specific inputs may regulate the expression of secreted proteins involved in different cardiac development processes. NOTCH signaling activation correlates with a transforming growth factor-ß2 (TGFß2)-rich secretome and the delivery of paracrine signals involved in focal adhesion and extracellular matrix (ECM) deposition and remodeling. In contrast, NOTCH inhibition is accompanied by the up-regulation of specific semaphorins that may modulate cell migration. The secretome protein expression data showed a good correlation with gene profiling of RNA expression in embryonic endocardial cells. Additional characterization by in situ hybridization in mouse embryos revealed expression of various NOTCH candidate effector genes (Tgfß2, Loxl2, Ptx3, Timp3, Fbln2, and Dcn) in heart valve endocardium and/or mesenchyme. Validating these results, mice with conditional Dll4 or Jag1 loss-of-function mutations showed gene expression alterations similar to those observed at the protein level in vitro These results provide the first description of the NOTCH-dependent endocardial secretome and validate MEEC as a tool for assaying the endocardial secretome response to a variety of stimuli and the potential use of this system for drug screening.


Asunto(s)
Endocardio/embriología , Endocardio/metabolismo , Válvulas Cardíacas/embriología , Receptores Notch/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Benzazepinas/farmacología , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Endocardio/citología , Endocardio/efectos de los fármacos , Matriz Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Válvulas Cardíacas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Ratones Mutantes , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA