Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(12): 7261-7278, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38721764

RESUMEN

RNA modifications, including N6-methyladenosine (m6A), critically modulate protein expression programs in a range of cellular processes. Although the transcriptomes of cells undergoing senescence are strongly regulated, the landscape and impact of m6A modifications during senescence are poorly understood. Here, we report a robust m6A modification of PTCHD4 mRNA, encoding Patched Domain-Containing Protein 4, in senescent cells. The METTL3/METTL14 complex was found to incorporate the m6A modification on PTCHD4 mRNA; addition of m6A rendered PTCHD4 mRNA more stable and increased PTCHD4 production. MeRIP RT-qPCR and eCLIP analyses were used to map this m6A modification to the last exon of PTCHD4 mRNA. Further investigation identified IGF2BP1, but not other m6A readers, as responsible for the stabilization and increased abundance of m6A-modified PTCHD4 mRNA. Silencing PTCHD4, a transmembrane protein, enhanced growth arrest and DNA damage in pre-senescent cells and sensitized them to senolysis and apoptosis. Our results indicate that m6A modification of PTCHD4 mRNA increases the production of PTCHD4, a protein associated with senescent cell survival, supporting the notion that regulating m6A modification on specific mRNAs could be exploited to eliminate senescent cells for therapeutic benefit.


Asunto(s)
Adenosina , Supervivencia Celular , Senescencia Celular , Metiltransferasas , ARN Mensajero , Proteínas de Unión al ARN , Humanos , Senescencia Celular/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Metiltransferasas/metabolismo , Metiltransferasas/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Supervivencia Celular/genética , Apoptosis/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Daño del ADN
2.
Aging (Albany NY) ; 16(8): 6717-6730, 2024 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-38637019

RESUMEN

Evaporation of sweat on the skin surface is the major mechanism for dissipating heat in humans. The secretory capacity of sweat glands (SWGs) declines during aging, leading to heat intolerance in the elderly, but the mechanisms responsible for this decline are poorly understood. We investigated the molecular changes accompanying SWG aging in mice, where sweat tests confirmed a significant reduction of active SWGs in old mice relative to young mice. We first identified SWG-enriched mRNAs by comparing the skin transcriptome of Eda mutant Tabby male mice, which lack SWGs, with that of wild-type control mice by RNA-sequencing analysis. This comparison revealed 171 mRNAs enriched in SWGs, including 47 mRNAs encoding 'core secretory' proteins such as transcription factors, ion channels, ion transporters, and trans-synaptic signaling proteins. Among these, 28 SWG-enriched mRNAs showed significantly altered abundance in the aged male footpad skin, and 11 of them, including Foxa1, Best2, Chrm3, and Foxc1 mRNAs, were found in the 'core secretory' category. Consistent with the changes in mRNA expression levels, immunohistology revealed that higher numbers of secretory cells from old SWGs express the transcription factor FOXC1, the protein product of Foxc1 mRNA. In sum, our study identified mRNAs enriched in SWGs, including those that encode core secretory proteins, and altered abundance of these mRNAs and proteins with aging in mouse SWGs.


Asunto(s)
Envejecimiento , Glándulas Sudoríparas , Animales , Glándulas Sudoríparas/metabolismo , Ratones , Envejecimiento/genética , Envejecimiento/metabolismo , Masculino , ARN Mensajero/metabolismo , ARN Mensajero/genética , Transcriptoma
3.
Nat Aging ; 3(10): 1237-1250, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37667102

RESUMEN

Sublethal cell damage can trigger senescence, a complex adaptive program characterized by growth arrest, resistance to apoptosis and a senescence-associated secretory phenotype (SASP). Here, a whole-genome CRISPR knockout screen revealed that proteins in the YAP-TEAD pathway influenced senescent cell viability. Accordingly, treating senescent cells with a drug that inhibited this pathway, verteporfin (VPF), selectively triggered apoptotic cell death largely by derepressing DDIT4, which in turn inhibited mTOR. Reducing mTOR function in senescent cells diminished endoplasmic reticulum (ER) biogenesis, triggering ER stress and apoptosis due to high demands on ER function by the SASP. Importantly, VPF treatment decreased the numbers of senescent cells in the organs of old mice and mice exhibiting doxorubicin-induced senescence. Moreover, VPF treatment reduced immune cell infiltration and pro-fibrotic transforming growth factor-ß signaling in aging mouse lungs, improving tissue homeostasis. We present an alternative senolytic strategy that eliminates senescent cells by hindering ER activity required for SASP production.


Asunto(s)
Envejecimiento , Senescencia Celular , Animales , Ratones , Envejecimiento/genética , Supervivencia Celular , Senescencia Celular/genética , Transducción de Señal , Serina-Treonina Quinasas TOR , Proteínas Señalizadoras YAP/metabolismo , Factores de Transcripción de Dominio TEA , Estrés del Retículo Endoplásmico/genética
4.
bioRxiv ; 2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-37609272

RESUMEN

Senescence is a state of indefinite cell cycle arrest associated with aging, cancer, and age-related diseases. Here, using label-based mass spectrometry, ribosome profiling and nanopore direct RNA sequencing, we explore the coordinated interaction of translational and transcriptional programs of human cellular senescence. We find that translational deregulation and a corresponding maladaptive integrated stress response (ISR) is a hallmark of senescence that desensitizes senescent cells to stress. We present evidence that senescent cells maintain high levels of eIF2α phosphorylation, typical of ISR activation, but translationally repress production of the stress response transcription factor 4 (ATF4) by ineffective bypass of the inhibitory upstream open reading frames. Surprisingly, ATF4 translation remains inhibited even after acute proteotoxic and amino acid starvation stressors, resulting in a highly diminished stress response. Furthermore, absent a response, stress augments the senescence secretory phenotype, thus intensifying a proinflammatory state that exacerbates disease. Our results reveal a novel mechanism that senescent cells exploit to evade an adaptive stress response and remain viable.

5.
Elife ; 122023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589453

RESUMEN

Age-associated DNA methylation in blood cells convey information on health status. However, the mechanisms that drive these changes in circulating cells and their relationships to gene regulation are unknown. We identified age-associated DNA methylation sites in six purified blood-borne immune cell types (naive B, naive CD4+ and CD8+ T cells, granulocytes, monocytes, and NK cells) collected from healthy individuals interspersed over a wide age range. Of the thousands of age-associated sites, only 350 sites were differentially methylated in the same direction in all cell types and validated in an independent longitudinal cohort. Genes close to age-associated hypomethylated sites were enriched for collagen biosynthesis and complement cascade pathways, while genes close to hypermethylated sites mapped to neuronal pathways. In silico analyses showed that in most cell types, the age-associated hypo- and hypermethylated sites were enriched for ARNT (HIF1ß) and REST transcription factor (TF) motifs, respectively, which are both master regulators of hypoxia response. To conclude, despite spatial heterogeneity, there is a commonality in the putative regulatory role with respect to TF motifs and histone modifications at and around these sites. These features suggest that DNA methylation changes in healthy aging may be adaptive responses to fluctuations of oxygen availability.


Asunto(s)
Envejecimiento , Linfocitos T CD8-positivos , Humanos , Envejecimiento/genética , Activación de Complemento , Metilación de ADN , Epigénesis Genética
6.
Aging Cell ; 22(11): e13915, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37462262

RESUMEN

Changes in the transcriptomes of human tissues with advancing age are poorly cataloged. Here, we sought to identify the coding and long noncoding RNAs present in cultured primary skin fibroblasts collected from 82 healthy individuals across a wide age spectrum (22-89 years old) who participated in the GESTALT (Genetic and Epigenetic Signatures of Translational Aging Laboratory Testing) study of the National Institute on Aging, NIH. Using high-throughput RNA sequencing and a linear regression model, we identified 1437 coding RNAs (mRNAs) and 1177 linear and circular long noncoding (lncRNAs) that were differentially abundant as a function of age. Gene set enrichment analysis (GSEA) revealed select transcription factors implicated in coordinating the transcription of subsets of differentially abundant mRNAs, while long noncoding RNA enrichment analysis (LncSEA) identified RNA-binding proteins predicted to participate in the age-associated lncRNA profiles. In summary, we report age-associated changes in the global transcriptome, coding and noncoding, from healthy human skin fibroblasts and propose that these transcripts may serve as biomarkers and therapeutic targets in aging skin.


Asunto(s)
ARN Largo no Codificante , Transcriptoma , Humanos , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Transcriptoma/genética , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Fibroblastos/metabolismo , Biomarcadores/metabolismo , Perfilación de la Expresión Génica
7.
J Clin Invest ; 133(12)2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37097759

RESUMEN

Senescent vascular smooth muscle cells (VSMCs) accumulate in the vasculature with age and tissue damage and secrete factors that promote atherosclerotic plaque vulnerability and disease. Here, we report increased levels and activity of dipeptidyl peptidase 4 (DPP4), a serine protease, in senescent VSMCs. Analysis of the conditioned media from senescent VSMCs revealed a unique senescence-associated secretory phenotype (SASP) signature comprising many complement and coagulation factors; silencing or inhibiting DPP4 reduced these factors and increased cell death. Serum samples from persons with high risk for cardiovascular disease contained high levels of DPP4-regulated complement and coagulation factors. Importantly, DPP4 inhibition reduced senescent cell burden and coagulation and improved plaque stability, while single-cell resolution of senescent VSMCs reflected the senomorphic and senolytic effects of DPP4 inhibition in murine atherosclerosis. We propose that DPP4-regulated factors could be exploited therapeutically to reduce senescent cell function, reverse senohemostasis, and improve vascular disease.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Ratones , Animales , Placa Aterosclerótica/genética , Dipeptidil Peptidasa 4/genética , Dipeptidil Peptidasa 4/metabolismo , Senescencia Celular/genética , Músculo Liso Vascular/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo
8.
Aging (Albany NY) ; 15(8): 2824-2851, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37086265

RESUMEN

Senescence is a state of enduring growth arrest triggered by sublethal cell damage. Given that senescent cells actively secrete proinflammatory and matrix-remodeling proteins, their accumulation in tissues of older persons has been linked to many diseases of aging. Despite intense interest in identifying robust markers of senescence, the highly heterogeneous and dynamic nature of the senescent phenotype has made this task difficult. Here, we set out to comprehensively analyze the senescent transcriptome of human diploid fibroblasts at the individual-cell scale by performing single-cell RNA-sequencing analysis through two approaches. First, we characterized the different cell states in cultures undergoing senescence triggered by different stresses, and found distinct cell subpopulations that expressed mRNAs encoding proteins with roles in growth arrest, survival, and the secretory phenotype. Second, we characterized the dynamic changes in the transcriptomes of cells as they developed etoposide-induced senescence; by tracking cell transitions across this process, we found two different senescence programs that developed divergently, one in which cells expressed traditional senescence markers such as p16 (CDKN2A) mRNA, and another in which cells expressed long noncoding RNAs and splicing was dysregulated. Finally, we obtained evidence that the proliferation status at the time of senescence initiation affected the path of senescence, as determined based on the expressed RNAs. We propose that a deeper understanding of the transcriptomes during the progression of different senescent cell phenotypes will help develop more effective interventions directed at this detrimental cell population.


Asunto(s)
Senescencia Celular , Transcriptoma , Humanos , Anciano , Anciano de 80 o más Años , Senescencia Celular/genética , Envejecimiento/genética , Fenotipo
9.
Elife ; 122023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37083495

RESUMEN

Senescent cells release a variety of cytokines, proteases, and growth factors collectively known as the senescence-associated secretory phenotype (SASP). Sustained SASP contributes to a pattern of chronic inflammation associated with aging and implicated in many age-related diseases. Here, we investigated the expression and function of the immunomodulatory cytokine BAFF (B-cell activating factor; encoded by the TNFSF13B gene), a SASP protein, in multiple senescence models. We first characterized BAFF production across different senescence paradigms, including senescent human diploid fibroblasts (WI-38, IMR-90) and monocytic leukemia cells (THP-1), and tissues of mice induced to undergo senescence. We then identified IRF1 (interferon regulatory factor 1) as a transcription factor required for promoting TNFSF13B mRNA transcription in senescence. We discovered that suppressing BAFF production decreased the senescent phenotype of both fibroblasts and monocyte-like cells, reducing IL6 secretion and SA-ß-Gal staining. Importantly, however, the influence of BAFF on the senescence program was cell type-specific: in monocytes, BAFF promoted the early activation of NF-κB and general SASP secretion, while in fibroblasts, BAFF contributed to the production and function of TP53 (p53). We propose that BAFF is elevated across senescence models and is a potential target for senotherapy.


Asunto(s)
Factor Activador de Células B , Senescencia Celular , Humanos , Animales , Ratones , Senescencia Celular/genética , Factor Activador de Células B/genética , Factor Activador de Células B/metabolismo , Factor Activador de Células B/farmacología , Secretoma , Envejecimiento/genética , Citocinas/metabolismo
11.
Aging (Albany NY) ; 14(24): 9832-9859, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36585921

RESUMEN

Circular RNAs are abundant, covalently closed transcripts that arise in cells through back-splicing and display distinct expression patterns across cells and developmental stages. While their functions are largely unknown, their intrinsic stability has made them valuable biomarkers in many diseases. Here, we set out to examine circRNA patterns in amyotrophic lateral sclerosis (ALS). By RNA-sequencing analysis, we first identified circRNAs and linear RNAs that were differentially abundant in skeletal muscle biopsies from ALS compared to normal individuals. By RT-qPCR analysis, we confirmed that 8 circRNAs were significantly elevated and 10 were significantly reduced in ALS, while the linear mRNA counterparts, arising from shared precursor RNAs, generally did not change. Several of these circRNAs were also differentially abundant in motor neurons derived from human induced pluripotent stem cells (iPSCs) bearing ALS mutations, and across different disease stages in skeletal muscle from a mouse model of ALS (SOD1G93A). Interestingly, a subset of the circRNAs significantly elevated in ALS muscle biopsies were significantly reduced in the spinal cord samples from ALS patients and ALS (SOD1G93A) mice. In sum, we have identified differentially abundant circRNAs in ALS-relevant tissues (muscle and spinal cord) that could inform about neuromuscular molecular programs in ALS and guide the development of therapies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Esclerosis Amiotrófica Lateral/metabolismo , ARN Circular/genética , ARN Circular/metabolismo , Superóxido Dismutasa-1/genética , Transcriptoma , Ratones Transgénicos , Superóxido Dismutasa/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Músculo Esquelético/metabolismo , Modelos Animales de Enfermedad
12.
Bio Protoc ; 12(23)2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36561115

RESUMEN

Macrophages are a heterogeneous class of innate immune cells that offer a primary line of defense to the body by phagocytizing pathogens, digesting them, and presenting the antigens to T and B cells to initiate adaptive immunity. Through specialized pro-inflammatory or anti-inflammatory activities, macrophages also directly contribute to the clearance of infections and the repair of tissue injury. Macrophages are distributed throughout the body and largely carry out tissue-specific functions. In skeletal muscle, macrophages regulate tissue repair and regeneration; however, the characteristics of these macrophages are not yet fully understood, and their involvement in skeletal muscle aging remains to be elucidated. To investigate these functions, it is critical to efficiently isolate macrophages from skeletal muscle with sufficient purity and yield for various downstream analyses. However, methods to prepare enriched skeletal muscle macrophages are scarce. Here, we describe in detail an optimized method to isolate skeletal muscle macrophages from mice. This method has allowed the isolation of CD45 + /CD11b + macrophage-enriched cells from young and old mice, which can be further used for flow cytometric analysis, fluorescence-activated cell sorting (FACS), and single-cell RNA sequencing. This protocol was validated in: eLife (2022), DOI: 10.7554/eLife.77974.

13.
Nucleic Acids Res ; 50(22): 13026-13044, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36533518

RESUMEN

The mammalian transcriptome comprises a vast family of long noncoding (lnc)RNAs implicated in physiologic processes such as myogenesis, through which muscle forms during embryonic development and regenerates in the adult. However, the specific molecular mechanisms by which lncRNAs regulate human myogenesis are poorly understood. Here, we identified a novel muscle-specific lncRNA, lncFAM71E1-2:2 (lncFAM), which increased robustly during early human myogenesis. Overexpression of lncFAM promoted differentiation of human myoblasts into myotubes, while silencing lncFAM suppressed this process. As lncFAM resides in the nucleus, chromatin isolation by RNA purification followed by mass spectrometry (ChIRP-MS) analysis was employed to identify the molecular mechanisms whereby it might promote myogenesis. Analysis of lncFAM-interacting proteins revealed that lncFAM recruited the RNA-binding protein HNRNPL to the promoter of MYBPC2, in turn increasing MYBPC2 mRNA transcription and enhancing production of the myogenic protein MYBPC2. These results highlight a mechanism whereby a novel ribonucleoprotein complex, lncFAM-HNRNPL, elevates MYBPC2 expression transcriptionally to promote myogenesis.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo L , Desarrollo de Músculos , Regiones Promotoras Genéticas , ARN Largo no Codificante , Transcripción Genética , Humanos , Ribonucleoproteína Heterogénea-Nuclear Grupo L/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo L/metabolismo , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/citología , Mioblastos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Transcripción Genética/genética , Silenciador del Gen , Transporte de Proteínas/genética
14.
Insects ; 13(11)2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36354799

RESUMEN

To evaluate the wound-healing effect of Antheraea pernyi epidermal growth factor (ApEGF), we performed the sequence analysis, cloning, and prokaryotic expression of cDNA from the ApEGF gene, examined the transcriptional changes, and investigated the wound-healing effect of this protein in cells and rat epidermis. Primers were designed based on available sequence information related to the ApEGF gene in a public database, and part of the ApEGF sequence was obtained. The full-length cDNA sequence of ApEGF was obtained using inverse PCR. The gene sequence fragment of ApEGF was 666 bp in length, encoding 221 amino acids, with a predicted protein mass of 24.19 kD, an isoelectric point of 5.15, and no signal peptide sequence. Sequence homology analysis revealed 86.1% sequence homology with Bombyx mori, 92.7% with Manducal sexta, 92.6% with Trichoplusia ni, and 91.8% with Helicoverpa armigera. ApEGF was truncated and then subjected to prokaryotic expression, isolation, and purification. Truncated ApEGF was used for wound-healing experiments in vitro and in vivo. The results showed that after 48 h, transforming growth factor (TGF)-ß1 had 187.32% cell growth effects, and the ApEGF group had 211.15% cell growth compared to the control group in vitro. In rat epidermis, truncated ApEGF showed a significantly better healing effect than the control. This result indicated that ApEGF, which exerted a direct wound-healing effect, could be used in wound-healing therapy.

15.
Elife ; 112022 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-36259488

RESUMEN

Tissue-resident macrophages represent a group of highly responsive innate immune cells that acquire diverse functions by polarizing toward distinct subpopulations. The subpopulations of macrophages that reside in skeletal muscle (SKM) and their changes during aging are poorly characterized. By single-cell transcriptomic analysis with unsupervised clustering, we found 11 distinct macrophage clusters in male mouse SKM with enriched gene expression programs linked to reparative, proinflammatory, phagocytic, proliferative, and senescence-associated functions. Using a complementary classification, membrane markers LYVE1 and MHCII identified four macrophage subgroups: LYVE1-/MHCIIhi (M1-like, classically activated), LYVE1+/MHCIIlo (M2-like, alternatively activated), and two new subgroups, LYVE1+/MHCIIhi and LYVE1-/MHCIIlo. Notably, one new subgroup, LYVE1+/MHCIIhi, had traits of both M2 and M1 macrophages, while the other new subgroup, LYVE1-/MHCIIlo, displayed strong phagocytic capacity. Flow cytometric analysis validated the presence of the four macrophage subgroups in SKM and found that LYVE1- macrophages were more abundant than LYVE1+ macrophages in old SKM. A striking increase in proinflammatory markers (S100a8 and S100a9 mRNAs) and senescence-related markers (Gpnmb and Spp1 mRNAs) was evident in macrophage clusters from older mice. In sum, we have identified dynamically polarized SKM macrophages and propose that specific macrophage subpopulations contribute to the proinflammatory and senescent traits of old SKM.


Asunto(s)
Macrófagos , Análisis de la Célula Individual , Ratones , Masculino , Animales , Macrófagos/metabolismo , Fagocitos/metabolismo , Transcriptoma , Biomarcadores/metabolismo , Músculo Esquelético/metabolismo
16.
Nat Commun ; 13(1): 6228, 2022 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-36266274

RESUMEN

Cellular senescence is characterized by cell cycle arrest, resistance to apoptosis, and a senescence-associated secretory phenotype (SASP) whereby cells secrete pro-inflammatory and tissue-remodeling factors. Given that the SASP exacerbates age-associated pathologies, some aging interventions aim at selectively eliminating senescent cells. In this study, a drug library screen uncovered TrkB (NTRK2) inhibitors capable of triggering apoptosis of several senescent, but not proliferating, human cells. Senescent cells expressed high levels of TrkB, which supported senescent cell viability, and secreted the TrkB ligand BDNF. The reduced viability of senescent cells after ablating BDNF signaling suggested an autocrine function for TrkB and BDNF, which activated ERK5 and elevated BCL2L2 levels, favoring senescent cell survival. Treatment with TrkB inhibitors reduced the accumulation of senescent cells in aged mouse organs. We propose that the activation of TrkB by SASP factor BDNF promotes cell survival and could be exploited therapeutically to reduce the senescent-cell burden.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Senescencia Celular , Animales , Humanos , Ratones , Apoptosis , Supervivencia Celular , Senescencia Celular/genética , Ligandos
17.
Nucleic Acids Res ; 50(12): 7115-7133, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35736212

RESUMEN

Long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) modulate gene expression programs in physiology and disease. Here, we report a noncoding RNA regulatory network that modulates myoblast fusion into multinucleated myotubes, a process that occurs during muscle development and muscle regeneration after injury. In early stages of human myogenesis, the levels of lncRNA OIP5-AS1 increased, while the levels of miR-7 decreased. Moreover, OIP5-AS1 bound and induced miR-7 decay via target RNA-directed miRNA decay; accordingly, loss of OIP5-AS1 attenuated, while antagonizing miR-7 accelerated, myotube formation. We found that the OIP5-AS1-mediated miR-7 degradation promoted myoblast fusion, as it derepressed the miR-7 target MYMX mRNA, which encodes the fusogenic protein myomixer (MYMX). Remarkably, an oligonucleotide site blocker interfered with the OIP5-AS1-directed miR-7 degradation, allowing miR-7 to accumulate, lowering MYMX production and suppressing myotube formation. These results highlight a mechanism whereby lncRNA OIP5-AS1-mediated miR-7 decay promotes myotube formation by stimulating a myogenic fusion program.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , MicroARNs/genética , Desarrollo de Músculos/genética
19.
Immunity ; 54(11): 2465-2480.e5, 2021 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-34706222

RESUMEN

Epigenetic reprogramming underlies specification of immune cell lineages, but patterns that uniquely define immune cell types and the mechanisms by which they are established remain unclear. Here, we identified lineage-specific DNA methylation signatures of six immune cell types from human peripheral blood and determined their relationship to other epigenetic and transcriptomic patterns. Sites of lineage-specific hypomethylation were associated with distinct combinations of transcription factors in each cell type. By contrast, sites of lineage-specific hypermethylation were restricted mostly to adaptive immune cells. PU.1 binding sites were associated with lineage-specific hypo- and hypermethylation in different cell types, suggesting that it regulates DNA methylation in a context-dependent manner. These observations indicate that innate and adaptive immune lineages are specified by distinct epigenetic mechanisms via combinatorial and context-dependent use of key transcription factors. The cell-specific epigenomics and transcriptional patterns identified serve as a foundation for future studies on immune dysregulation in diseases and aging.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Epigenómica , Regulación de la Expresión Génica , Inmunidad , Factores de Transcripción/metabolismo , Transcriptoma , Epigenómica/métodos , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Factores de Transcripción/genética
20.
Sci Rep ; 11(1): 16645, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34404863

RESUMEN

Cystic fibrosis (CF) occurs as a result of mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, which lead to misfolding, trafficking defects, and impaired function of the CFTR protein. Splicing factor proline/glutamine-rich (SFPQ) is a multifunctional nuclear RNA-binding protein (RBP) implicated in the regulation of gene expression pathways and intracellular trafficking. Here, we investigated the role of SFPQ in the regulation of the expression and function of F508del-CFTR in CF lung epithelial cells. We find that the expression of SFPQ is reduced in F508del-CFTR CF epithelial cells compared to WT-CFTR control cells. Interestingly, the overexpression of SFPQ in CF cells increases the expression as well as rescues the function of F508del-CFTR. Further, comprehensive transcriptome analyses indicate that SFPQ plays a key role in activating the mutant F508del-CFTR by modulating several cellular signaling pathways. This is the first report on the role of SFPQ in the regulation of expression and function of F508del-CFTR in CF lung disease. Our findings provide new insights into SFPQ-mediated molecular mechanisms and point to possible novel epigenetic therapeutic targets for CF and related pulmonary diseases.


Asunto(s)
Bronquios/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Fibrosis Quística/metabolismo , Factor de Empalme Asociado a PTB/fisiología , Bronquios/patología , Células Cultivadas , Fibrosis Quística/patología , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Epiteliales/metabolismo , Células Epiteliales/patología , Regulación de la Expresión Génica/fisiología , Humanos , Mutación , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...