Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Mol Cell Endocrinol ; 566-567: 111911, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36905979

RESUMEN

Liver impact of prolonged GH-treatment given to non-GH-deficient growing mice between the third and eighth week of life was evaluated in both sexes. Tissues were collected 6 h after last dose or four weeks later. Somatometric, biochemical, histological, immunohistochemical, RT-qPCR and immunoblotting determinations were performed. Five-week GH intermittent administration induced body weight gain and body and bone length increase, augmented organ weight, higher hepatocellular size and proliferation, and increased liver IGF1 gene expression. Phosphorylation of signaling mediators and expression of GH-induced proliferation-related genes was decreased in GH-treated mice liver 6h after last injection, reflecting active sensitization/desensitization cycles. In females, GH elicited EGFR expression, associated to higher EGF-induced STAT3/5 phosphorylation. Four weeks after treatment, increased organ weight concomitant to body weight gain was still observed, whereas hepatocyte enlargement reverted. However, basal signaling for critical mediators was lower in GH-treated animals and in male controls compared to female ones, suggesting signaling declination.


Asunto(s)
Hormona del Crecimiento , Transducción de Señal , Ratones , Masculino , Femenino , Animales , Hormona del Crecimiento/metabolismo , Fosforilación , Hígado/metabolismo , Peso Corporal
2.
J Mol Endocrinol ; 69(2): 357-376, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35608964

RESUMEN

Growth hormone (GH) exerts major actions in cardiac growth and metabolism. Considering the important role of insulin in the heart and the well-established anti-insulin effects of GH, cardiac insulin resistance may play a role in the cardiopathology observed in acromegalic patients. As conditions of prolonged exposure to GH are associated with a concomitant increase of circulating GH, IGF1 and insulin levels, to dissect the direct effects of GH, in this study, we evaluated the activation of insulin signaling in the heart using four different models: (i) transgenic mice overexpressing GH, with chronically elevated GH, IGF1 and insulin circulating levels; (ii) liver IGF1-deficient mice, with chronically elevated GH and insulin but decreased IGF1 circulating levels; (iii) mice treated with GH for a short period of time; (iv) primary culture of rat cardiomyocytes incubated with GH. Despite the differences in the development of cardiomegaly and in the metabolic alterations among the three experimental mouse models analyzed, exposure to GH was consistently associated with a decreased response to acute insulin stimulation in the heart at the receptor level and through the PI3K/AKT pathway. Moreover, a blunted response to insulin stimulation of this signaling pathway was also observed in cultured cardiomyocytes of neonatal rats incubated with GH. Therefore, the key novel finding of this work is that impairment of insulin signaling in the heart is a direct and early event observed as a consequence of exposure to GH, which may play a major role in the development of cardiac pathology.


Asunto(s)
Acromegalia , Hormona de Crecimiento Humana , Animales , Hormona del Crecimiento/metabolismo , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas , Transducción de Señal
3.
Mol Cell Endocrinol ; 509: 110802, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32259636

RESUMEN

Continuously elevated levels of growth hormone (GH) during life in mice are associated with hepatomegaly due to hepatocytes hypertrophy and hyperplasia, chronic liver inflammation, elevated levels of arachidonic acid (AA) at young ages and liver tumors development at old ages. In this work, the hepatic expression of enzymes involved in AA metabolism, cPLA2α, COX1 and COX2 enzymes, was evaluated in young and old GH-transgenic mice. Mice overexpressing GH exhibited higher hepatic expression of cPLA2α, COX1 and COX2 in comparison to controls at young and old ages and in both sexes. In old mice, when tumoral and non-tumoral tissue were compared, elevated expression of COX2 was observed in tumors. In contrast, exposure to continuous lower levels of hormone for a short period affected COX1 expression only in males. Considering the role of inflammation during liver tumorigenesis, these findings support a role of alterations in AA metabolism in GH-driven liver tumorigenesis.


Asunto(s)
Fosfolipasas A2 Grupo IV/genética , Hormona del Crecimiento/metabolismo , Hígado/metabolismo , Prostaglandina-Endoperóxido Sintasas/genética , Regulación hacia Arriba/genética , Alanina Transaminasa/sangre , Animales , Peso Corporal , Bovinos , Proliferación Celular , Femenino , Fosfolipasas A2 Grupo IV/metabolismo , Hepatocitos/citología , Hígado/anatomía & histología , Masculino , Ratones Transgénicos , Tamaño de los Órganos , Fosforilación , Prostaglandina-Endoperóxido Sintasas/metabolismo , Ratas , Receptor IGF Tipo 1/metabolismo , Receptores de Somatotropina/metabolismo
4.
Endocr Connect ; 8(8): 1108-1117, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-31272083

RESUMEN

Transgenic mice overexpressing growth hormone (GH) spontaneously develop liver tumors, including hepatocellular carcinoma (HCC), within a year. The preneoplastic liver pathology in these mice recapitulates that observed in humans at high risk of developing hepatic cancer. Although increased expression of galectin 1 (GAL1) in liver tissue is associated with HCC aggressiveness, a link between this glycan-binding protein and hormone-related tumor development has not yet been explored. In this study, we investigated GAL1 expression during liver tumor progression in mice continuously exposed to high levels of GH. GAL1 expression was determined by Western blotting, RT-qPCR and immunohistochemistry in the liver of transgenic mice overexpressing GH. Animals of representative ages at different stages of liver pathology were studied. GAL1 expression was upregulated in the liver of GH-transgenic mice. This effect was observed at early ages, when animals displayed no signs of liver disease or minimal histopathological alterations and was also detected in young adults with preneoplastic liver pathology. Remarkably, GAL1 upregulation was sustained during aging and its expression was particularly enhanced in liver tumors. GH also induced hepatic GAL1 expression in mice that were treated with this hormone for a short period. Moreover, GH triggered a rapid increment in GAL1 protein expression in human HCC cells, denoting a direct effect of the hormone on hepatocytes. Therefore, our results indicate that GH upregulates GAL1 expression in mouse liver, which may have critical implications in tumorigenesis. These findings suggest that this lectin could be implicated in hormone-driven liver carcinogenesis.

5.
Methods Cell Biol ; 149: 239-257, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30616823

RESUMEN

The development of live-cell sensors for real-time measurement of signaling responses, with improved spatial and temporal resolution with respect to classical biochemical methods, has changed our understanding of cellular signaling. Examination of cAMP generation downstream activated GPCRs has shown that signaling responses can be short-lived (generated from the cell surface) or prolonged after receptor internalization. Class B secretin-like Corticotropin-releasing hormone receptor 1 (CRHR1) is a key player in stress pathophysiology. By monitoring real-time signaling in living cells, we uncovered cell context-dependent temporal characteristics of CRHR1-elicited cAMP responses and disclosed a specific link between cAMP generation and receptor signaling from internal compartments. We describe technical aspects and elaborate the protocols for cell line expression of Förster resonance energy transfer (FRET)-based biosensors to study the dynamics of cAMP and calcium signaling responses downstream activated CRHR1, live-cell imaging and analysis, and fluorescence flow cytometry to determine receptor levels at the cell surface.


Asunto(s)
Sistemas de Computación , Endocitosis , Transferencia Resonante de Energía de Fluorescencia/métodos , Receptores de Hormona Liberadora de Corticotropina/agonistas , Transducción de Señal , Animales , Calcio/metabolismo , Línea Celular , AMP Cíclico/metabolismo , Humanos , Ratones , Ratas , Receptores de Hormona Liberadora de Corticotropina/metabolismo
6.
Int J Mol Sci ; 18(5)2017 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-28509880

RESUMEN

The reliability of reverse transcription-quantitative PCR (RT-qPCR) results in gene expression studies depends on the approaches used to account for non-biological variations. In order to find a proper normalization strategy for the study of genes related to growth hormone signaling in skeletal muscle of growing mice, nine unrelated genes were evaluated as internal controls. According to the most used algorithms-geNorm, the Comparative ΔCq method, NormFinder and BestKeeper-GSK3B, YWHAZ, RPL13A and RN18S were found as the most stable. However, the relative expression levels of eight of the potential reference genes assessed decreased with age in cDNA samples obtained from the same amount of total RNA. In a different approach to analyze this apparent discrepancy, experiments were performed with cDNA obtained from equal amounts of purified mRNA. Since the decline was still observed, the hypothesis of an age-related change in mRNA to total RNA ratio that could account for the systematic decrease was rejected. Differences among experimental groups could be due to a substantial increase with age in highly expressed mRNAs, which would bias the quantitation of the remaining genes. Consequently, those reference genes reflecting this dilution effect, which would have been discarded considering their variable relative expression levels, arose as suitable internal controls.


Asunto(s)
Perfilación de la Expresión Génica , Marcadores Genéticos , Reacción en Cadena en Tiempo Real de la Polimerasa , Animales , Expresión Génica , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Regulación de la Expresión Génica , Hormona del Crecimiento/genética , Ratones , Músculo Esquelético/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/normas , Reproducibilidad de los Resultados , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
Cell Cycle ; 15(5): 748-59, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27028000

RESUMEN

Growth hormone (GH) is a pleiotropic hormone that triggers STATs, ERK1/2 and Akt signaling, related to cell growth and proliferation. Transgenic mice overexpressing GH present increased body size, with a disproportionate liver enlargement due to hypertrophy and hyperplasia of the hepatocytes. We had described enhanced mitogenic signaling in liver of young adult transgenic mice. We now evaluate the activation of these signaling cascades during the growth period and relate them to the morphological alterations found. Signaling mediators, cell cycle regulators and transcription factors involved in cellular growth in the liver of GH-overexpressing growing mice were assessed by immunoblotting, RT-qPCR and immunohistochemistry. Hepatocyte enlargement can be seen as early as 2-weeks of age in GH-overexpressing animals, although it is more pronounced in young adults. Levels of cell cycle mediators PCNA and cyclin D1, and transcription factor c-Jun increase with age in transgenic mice with no changes in normal mice, whereas c-Myc levels are higher in 2-week-old transgenic animals and cyclin E levels decline with age for both genotypes. STAT3, Akt and GSK3 present higher activation in the adult transgenic mice than in the growing animals, while for c-Src and mTOR, phosphorylation in GH-overexpressing mice is higher than in control siblings at 4 and 9 weeks of age. No significant changes are observed for ERK1/2, neither by age or genotype. Thus, the majority of the mitogenic signaling pathways are gradually up-regulated in the liver of GH-transgenic mice, giving rise to the hepatic morphological changes these mice exhibit.


Asunto(s)
Hormona del Crecimiento/metabolismo , Hígado/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Hígado/citología , Hígado/crecimiento & desarrollo , Masculino , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitosis , Tamaño de los Órganos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
8.
J Mol Endocrinol ; 54(2): 171-84, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25691498

RESUMEN

GH/STAT5 signaling is desensitized in the liver in adult transgenic mice overexpressing GH; however, these animals present greater body size. To assess whether the STAT5 pathway is active during the growth period in the liver in these animals, and how signaling modulators participate in this process, growing transgenic mice and normal siblings were evaluated. STAT5 does not respond to an acute GH-stimulus, but displays higher basal phosphorylation in the livers of growing GH-overexpressing mice. GH receptor and the positive modulators glucocorticoid receptor and HNF1 display greater abundance in transgenic animals, supporting the activity of STAT5. The negative modulators cytokine-induced suppressor and PTP1B are increased in GH-overexpressing mice. The suppressors SOCS2 and SOCS3 exhibit higher mRNA levels in transgenic mice but lower protein content, indicating that they are being actively degraded. Therefore, STAT5 signaling is increased in the liver in GH-transgenic mice during the growth period, with a balance between positive and negative effectors resulting in accelerated but controlled growth.


Asunto(s)
Hormona del Crecimiento/metabolismo , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Factor de Transcripción STAT5/metabolismo , Transducción de Señal , Animales , Regulación del Desarrollo de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Proteínas Supresoras de la Señalización de Citocinas/genética , Proteínas Supresoras de la Señalización de Citocinas/metabolismo
9.
Growth Horm IGF Res ; 23(1-2): 19-28, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23245546

RESUMEN

Postnatal growth exhibits two instances of rapid growth in mice: the first is perinatal and independent of growth hormone (GH), the second is peripuberal and GH-dependent. Signal transducer and activator of transcription 5b (STAT5b) is the main GH-signaling mediator and it is related to IGF1 synthesis and somatic growth. The aim of this work was to assess differential STAT5 sensitivity to GH during the growth period in mouse liver of both sexes. Three representative ages were selected: 1-week-old animals, in the GH-independent phase of growth; 2.5-week-old mice, at the onset of the GH-dependent phase of growth; and 9-week-old young adults. GH-signaling mediators were assessed by immunoblotting, quantitative RT-PCR and immunohistochemistry. GH-induced STAT5 phosphorylation is low at one-week and maximal at 2.5-weeks of age when compared to young adults, accompanied by higher protein content at the onset of growth. Suppressor CIS and phosphatase PTP1B exhibit high levels in one-week animals, which gradually decline, while SOCS2 and SOCS3 display higher levels at adulthood. Nuclear phosphorylated STAT5 is low in one-week animals while in 2.5-week animals it is similar to 9-week control; expression of SOCS3, an early response GH-target gene, mimics this pattern. STAT5 coactivators glucocorticoid receptor (GR) and hepatic nuclear factor 1 (HNF1) abundance is higher in adulthood. Therefore, GH-induced STAT5 signaling presents age-dependent activity in liver, with its maximum coinciding with the onset of GH-dependent phase of growth, accompanied by an age-dependent variation of modulating factors. This work contributes to elucidate the molecular mechanisms implicated in GH responsiveness during growth.


Asunto(s)
Hormona del Crecimiento/metabolismo , Crecimiento y Desarrollo , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Factor de Transcripción STAT5/metabolismo , Factores de Edad , Animales , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Femenino , Hormona del Crecimiento/farmacología , Crecimiento y Desarrollo/efectos de los fármacos , Crecimiento y Desarrollo/genética , Crecimiento y Desarrollo/fisiología , Janus Quinasa 2/metabolismo , Hígado/efectos de los fármacos , Masculino , Ratones , Fosforilación/efectos de los fármacos , Receptores de Somatotropina/genética , Receptores de Somatotropina/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...