Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
bioRxiv ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39282448

RESUMEN

Retinal degenerative diseases of photoreceptors are a leading cause of blindness with no effective treatment. Retinal prostheses seek to restore sight by stimulating remaining retinal cells. We here present a photoacoustic retinal stimulation technology. We designed a polydimethylsiloxane and carbon-based flexible film that converts near-infrared laser pulses into a localized acoustic field, aiming at high-precision acoustic activation of mechanosensitive retinal cells. This photoacoustic stimulation of wild-type and degenerated ex vivo retinae resulted in robust and localized retinal ganglion cell activation with sub-100-µm resolution in both wild-type and degenerated ex vivo retinae. Our millimeter-size photoacoustic film generated neural activation in vivo along the visual pathway to the superior colliculus, as measured by functional ultrasound imaging when the film was implanted in the rat subretinal space and stimulated by pulsed laser. Biosafety of the film was indicated by absence of short-term adverse effect under optical coherence tomography retinal imaging, while local thermal increase was measured below 1 °C. These findings demonstrate the potential of our photoacoustic stimulation for visual restoration in blind patients with a high spatial precision and a large field of view.

2.
Invest Ophthalmol Vis Sci ; 65(11): 18, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39250117

RESUMEN

Purpose: To determine whether the Lrit3-/- mouse model of complete congenital stationary night blindness with an ON-pathway defect harbors myopic features and whether the genetic defect influences the recovery from lens-induced myopia. Methods: Retinal levels of dopamine (DA) and 3,4 dihydroxyphenylacetic acid (DOPAC) from adult isolated Lrit3-/- retinas were quantified using ultra performance liquid chromatography after light adaptation. Natural refractive development of Lrit3-/- mice was measured from three weeks to nine weeks of age using an infrared photorefractometer. Susceptibility to myopia induction was assessed using a lens-induced myopia protocol with -25 D lenses placed in front of the right eye of the animals for three weeks; the mean interocular shift was measured with an infrared photorefractometer after two and three weeks of goggling and after one and two weeks after removal of goggles. Results: Compared to wild-type littermates (Lrit3+/+), both DA and DOPAC were drastically reduced in Lrit3-/- retinas. Natural refractive development was normal but Lrit3-/- mice showed a higher myopic shift and a lower ability to recover from induced myopia. Conclusions: Our data consolidate the link between ON pathway defect altered dopaminergic signaling and myopia. We document for the first time the role of ON pathway on the recovery from myopia induction.


Asunto(s)
Ácido 3,4-Dihidroxifenilacético , Modelos Animales de Enfermedad , Dopamina , Ratones Noqueados , Miopía , Refracción Ocular , Animales , Ratones , Miopía/fisiopatología , Miopía/metabolismo , Miopía/genética , Dopamina/metabolismo , Ácido 3,4-Dihidroxifenilacético/metabolismo , Refracción Ocular/fisiología , Ratones Endogámicos C57BL , Retina/metabolismo , Retina/fisiopatología , Ceguera Nocturna/fisiopatología , Ceguera Nocturna/genética , Ceguera Nocturna/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Recuperación de la Función/fisiología , Masculino , Enfermedades Hereditarias del Ojo
3.
Nanoscale Horiz ; 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39229772

RESUMEN

Neuroelectronic prostheses are being developed for restoring vision at the retinal level in patients who have lost their sight due to photoreceptor loss. The core component of these devices is the electrode array, which enables interfacing with retinal neurons. Generating the perception of meaningful images requires high-density microelectrode arrays (MEAs) capable of precisely activating targeted retinal neurons. Achieving this precision necessitates the downscaling of electrodes to micrometer dimensions. However, miniaturization increases electrode impedance, which poses challenges by limiting the amount of current that can be delivered, thereby impairing the electrode's capability for effective neural modulation. Additionally, it elevates noise levels, reducing the signal quality of the recorded neural activity. This report focuses on evaluating reduced graphene oxide (rGO) based devices for interfacing with the retina, showcasing their potential in vision restoration. Our findings reveal low impedance and high charge injection limit for microscale rGO electrodes, confirming their suitability for developing next-generation high-density retinal devices. We successfully demonstrated bidirectional interfacing with cell cultures and explanted retinal tissue, enabling the identification and modulation of multiple cells' activity. Additionally, calcium imaging allowed real-time monitoring of retinal cell dynamics, demonstrating a significant reduction in activated areas with small-sized electrodes. Overall, this study lays the groundwork for developing advanced rGO-based MEAs for high-acuity visual prostheses.

4.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38474284

RESUMEN

N-retinylidene-N-retinylethanolamine (A2E) has been associated with age-related macular degeneration (AMD) physiopathology by inducing cell death, angiogenesis and inflammation in retinal pigmented epithelial (RPE) cells. It was previously thought that the A2E effects were solely mediated via the retinoic acid receptor (RAR)-α activation. However, this conclusion was based on experiments using the RAR "specific" antagonist RO-41-5253, which was found to also be a ligand and partial agonist of the peroxisome proliferator-activated receptor (PPAR)-γ. Moreover, we previously reported that inhibiting PPAR and retinoid X receptor (RXR) transactivation with norbixin also modulated inflammation and angiogenesis in RPE cells challenged in the presence of A2E. Here, using several RAR inhibitors, we deciphered the respective roles of RAR, PPAR and RXR transactivations in an in vitro model of AMD. We showed that BMS 195614 (a selective RAR-α antagonist) displayed photoprotective properties against toxic blue light exposure in the presence of A2E. BMS 195614 also significantly reduced the AP-1 transactivation and mRNA expression of the inflammatory interleukin (IL)-6 and vascular endothelial growth factor (VEGF) induced by A2E in RPE cells in vitro, suggesting a major role of RAR in these processes. Surprisingly, however, we showed that (1) Norbixin increased the RAR transactivation and (2) AGN 193109 (a high affinity pan-RAR antagonist) and BMS 493 (a pan-RAR inverse agonist), which are photoprotective against toxic blue light exposure in the presence of A2E, also inhibited PPARs transactivation and RXR transactivation, respectively. Therefore, in our in vitro model of AMD, several commercialized RAR inhibitors appear to be non-specific, and we propose that the phototoxicity and expression of IL-6 and VEGF induced by A2E in RPE cells operates through the activation of PPAR or RXR rather than by RAR transactivation.


Asunto(s)
Carotenoides , Degeneración Macular , Receptores Activados del Proliferador del Peroxisoma , Quinolinas , para-Aminobenzoatos , Antiinflamatorios , Agonismo Inverso de Drogas , Inflamación , Degeneración Macular/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Receptores X Retinoide/metabolismo , Retinoides/metabolismo , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/metabolismo
5.
Nanoscale Horiz ; 9(4): 544-554, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38323517

RESUMEN

Current methodology used to investigate how shifts in brain states associated with regional cerebral blood volume (CBV) change in deep brain areas, are limited by either the spatiotemporal resolution of the CBV techniques, and/or compatibility with electrophysiological recordings; particularly in relation to spontaneous brain activity and the study of individual events. Additionally, infraslow brain signals (<0.1 Hz), including spreading depolarisations, DC-shifts and infraslow oscillations (ISO), are poorly captured by traditional AC-coupled electrographic recordings; yet these very slow brain signals can profoundly change CBV. To gain an improved understanding of how infraslow brain signals couple to CBV we present a new method for concurrent CBV with wide bandwidth electrophysiological mapping using simultaneous functional ultrasound imaging (fUS) and graphene-based field effect transistor (gFET) DC-coupled electrophysiological acquisitions. To validate the feasibility of this methodology visually-evoked neurovascular coupling (NVC) responses were examined. gFET recordings are not affected by concurrent fUS imaging, and epidural placement of gFET arrays within the imaging window did not deteriorate fUS signal quality. To examine directly the impact of infra-slow potential shifts on CBV, cortical spreading depolarisations (CSDs) were induced. A biphasic pattern of decreased, followed by increased CBV, propagating throughout the ipsilateral cortex, and a delayed decrease in deeper subcortical brain regions was observed. In a model of acute seizures, CBV oscillations were observed prior to seizure initiation. Individual seizures occurred on the rising phase of both infraslow brain signal and CBV oscillations. When seizures co-occurred with CSDs, CBV responses were larger in amplitude, with delayed CBV decreases in subcortical structures. Overall, our data demonstrate that gFETs are highly compatible with fUS and allow concurrent examination of wide bandwidth electrophysiology and CBV. This graphene-enabled technological advance has the potential to improve our understanding of how infraslow brain signals relate to CBV changes in control and pathological brain states.


Asunto(s)
Grafito , Humanos , Encéfalo/diagnóstico por imagen , Convulsiones , Electrofisiología , Circulación Cerebrovascular/fisiología , Ultrasonografía
6.
Neural Regen Res ; 19(3): 606-610, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37721291

RESUMEN

Taurine is considered a non-essential amino acid because it is synthesized by most mammals. However, dietary intake of taurine may be necessary to achieve the physiological levels required for the development, maintenance, and function of certain tissues. Taurine may be especially important for the retina. The concentration of taurine in the retina is higher than that in any other tissue in the body and taurine deficiency causes retinal oxidative stress, apoptosis, and degeneration of photoreceptors and retinal ganglion cells. Low plasma taurine levels may also underlie retinal degeneration in humans and therefore, taurine administration could exert retinal neuroprotective effects. Taurine has antioxidant, anti-apoptotic, immunomodulatory, and calcium homeostasis-regulatory properties. This review summarizes the role of taurine in retinal health and disease, where it appears that taurine may be a promising nutraceutical.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37848250

RESUMEN

Rodent models of retinal degeneration are essential for the development of therapeutic strategies. In addition to living animal models, we here also discuss models based on rodent cell cultures, such as purified retinal ganglion cells and retinal explants. These ex vivo models extend the possibilities for investigating pathological mechanisms and assessing the neuroprotective effect of pharmacological agents by eliminating questions on drug pharmacokinetics and bioavailability. The number of living rodent models has greatly increased with the possibilities to achieve transgenic modifications in animals for knocking in and out genes and mutations. The Cre-lox system has further enabled investigators to target specific genes or mutations in specific cells at specific stages. However, chemically or physically induced models can provide alternatives to such targeted gene modifications. The increased diversity of rodent models has widened our possibility to address most ocular pathologies for providing initial proof of concept of innovative therapeutic strategies.

8.
Commun Biol ; 6(1): 992, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37770552

RESUMEN

Dynamic full-field optical coherence tomography (D-FFOCT) has recently emerged as a label-free imaging tool, capable of resolving cell types and organelles within 3D live samples, whilst monitoring their activity at tens of milliseconds resolution. Here, a D-FFOCT module design is presented which can be coupled to a commercial microscope with a stage top incubator, allowing non-invasive label-free longitudinal imaging over periods of minutes to weeks on the same sample. Long term volumetric imaging on human induced pluripotent stem cell-derived retinal organoids is demonstrated, highlighting tissue and cell organization processes such as rosette formation and mitosis as well as cell shape and motility. Imaging on retinal explants highlights single 3D cone and rod structures. An optimal workflow for data acquisition, postprocessing and saving is demonstrated, resulting in a time gain factor of 10 compared to prior state of the art. Finally, a method to increase D-FFOCT signal-to-noise ratio is demonstrated, allowing rapid organoid screening.


Asunto(s)
Células Madre Pluripotentes Inducidas , Tomografía de Coherencia Óptica , Humanos , Tomografía de Coherencia Óptica/métodos , Retina , Técnicas de Cultivo de Célula , Organoides
9.
Sci Adv ; 9(31): eadg8163, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531424

RESUMEN

The anatomical differences between the retinas of humans and most animal models pose a challenge for testing novel therapies. Nonhuman primate (NHP) retina is anatomically closest to the human retina. However, there is a lack of relevant NHP models of retinal degeneration (RD) suitable for preclinical studies. To address this unmet need, we generated three distinct inducible cynomolgus macaque models of RD. We developed two genetically targeted strategies using optogenetics and CRISPR-Cas9 to ablate rods and mimic rod-cone dystrophy. In addition, we created an acute model by physical separation of the photoreceptors and retinal pigment epithelium using a polymer patch. Among the three models, the CRISPR-Cas9-based approach was the most advantageous model in view of recapitulating disease-specific features and its ease of implementation. The acute model, however, resulted in the fastest degeneration, making it the most relevant model for testing end-stage vision restoration therapies such as stem cell transplantation.


Asunto(s)
Degeneración Retiniana , Animales , Humanos , Degeneración Retiniana/terapia , Retina , Células Fotorreceptoras Retinianas Bastones , Epitelio Pigmentado de la Retina , Primates
10.
Ophthalmol Sci ; 3(4): 100316, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37274010

RESUMEN

Objective: To describe adaptive optics flood illumination ophthalmoscopy (AO-FIO) of the photoreceptor layer in normal nonhuman primates (NHPs) and in the case of a short-term induced retinal detachment (RD). Design: Longitudinal fundamental research study. Subjects: Four NHPs were used to image normal retinae with AO-FIO (in comparison with 4 healthy humans); 2 NHPs were used to assess the effects of RD. Intervention: The photoreceptor layer (cone mosaic metrics, including cone density, cone spacing, and cone regularity) was followed with AO-FIO imaging (rtx1, Imagine Eyes) during a surgically induced RD in 2 NHPs using a vehicle solution containing dimethyl sulfoxide, classically used as a chemical solvent. We also performed functional testing of the retina (full-field and multifocal electroretinogram [ERG]). Main Outcome Measures: Correlation of cone mosaic metrics (cone density, spacing, and regularity) between normal retinae of NHPs and humans, and cone metrics, power spectrum, and ERG wave amplitudes after RD. Results: Imaging features were very similar in terms of cone reflectivity, cell density, regularity, and spacing values, showing strong positive correlations between NHPs and humans. After RD, AO-FIO revealed several alterations of the cone mosaic slowly recovering during the 3 months after the reattachment, which were not detected functionally by ERG. Conclusions: These results demonstrate by in vivo AO-FIO imaging the transient structural changes of photoreceptors after an RD in the primate retina. They also provide an interesting illustration of the AO-FIO potential for investigating photoreceptor toxicity during preclinical studies in NHPs with a high translatability to human studies. Financial Disclosures: Proprietary or commercial disclosure may be found after the references.

11.
JBMR Plus ; 7(6): e10741, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37283650

RESUMEN

Early-onset osteoporosis (EOOP) has been associated with several genes, including LRP5, coding for a coreceptor in the Wnt pathway. Variants in LRP5 were also described in osteoporosis pseudoglioma syndrome, combining severe osteoporosis and eye abnormalities. Genomewide-association studies (GWAS) showed that LRP5 p.Val667Met (V667M) variant is associated with low bone mineral density (BMD) and increased fractures. However, despite association with a bone phenotype in humans and knockout mice, the impact of the variant in bone and eye remains to be investigated. Here, we aimed to evaluate the bone and ocular impact of the V667M variant. We recruited 11 patients carrying the V667M variant or other loss-of-function variants of LRP5 and generated an Lrp5 V667M mutated mice. Patients had low lumbar and hip BMD Z-score and altered bone microarchitecture evaluated by HR-pQCT compared with an age-matched reference population. Murine primary osteoblasts from Lrp5 V667M mice showed lower differentiation capacity, alkaline phosphatase activity, and mineralization capacity in vitro. Ex vivo, mRNA expression of Osx, Col1, and osteocalcin was lower in Lrp5 V667M bones than controls (all p < 0.01). Lrp5 V667M 3-month-old mice, compared with control (CTL) mice, had decreased BMD at the femur (p < 0.01) and lumbar spine (p < 0.01) with normal microarchitecture and bone biomarkers. However, Lrp5 V667M mice revealed a trend toward a lower femoral and vertebral stiffness (p = 0.14) and had a lower hydroxyproline/proline ratio compared with CTL, (p = 0.01), showing altered composition and quality of the bone matrix. Finally, higher tortuosity of retinal vessels was found in the Lrp5 V667M mice and unspecific vascular tortuosity in two patients only. In conclusion, Lrp5 V667M variant is associated with low BMD and impaired bone matrix quality. Retinal vascularization abnormalities were observed in mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

12.
eNeuro ; 10(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37068950

RESUMEN

In addition to brain disorders, which constitute a devastating consequence of prenatal alcohol exposure (PAE), eye development is also significantly affected. Given that the retina is a readily accessible part of the central nervous system, a better understanding of the impact of ethanol on retinal development might provide ophthalmological landmarks helpful for early diagnosis of fetal alcohol syndrome. This study aimed to provide a fine morphometric and cellular characterization of the development of retinal microvasculature and neurovascular interactions in a mouse model of fetal alcohol spectrum disorder (FASD). The data revealed that PAE impaired superficial vascular plexus development. In particular, progression of the vascular migration front was significantly decreased in PAE retinas, supporting a delay in plexus progression. Moreover, a significant decrease in the vessel density and number of perforating vessels was quantified in PAE mice, supporting less angiogenesis. The present study provides also the first evidence of a close interaction between migrating calretinin-positive interneurons and perforating microvessels in the inner nuclear layer of the developing retina. This neurovascular association was significantly impaired by PAE. Moreover, projections of amacrine cells were abnormally distributed and densified in stratum S1 and S2. In humans, comparison of a five-month-old control infant with a three-month-old alcohol-exposed case revealed a similar mispositioning of calretinin-positive interneurons. This opens new research avenues regarding a neurovascular contribution in the deleterious effects of alcohol in the developing retina and support that ophthalmological examination could become a promising approach for early detection of alcohol-exposed infants presenting with neurovascular brain defects.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Humanos , Lactante , Ratones , Embarazo , Calbindina 2 , Etanol/toxicidad , Trastornos del Espectro Alcohólico Fetal/diagnóstico , Interneuronas , Microvasos , Retina
13.
Nat Nanotechnol ; 18(6): 667-676, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37012508

RESUMEN

Remote and precisely controlled activation of the brain is a fundamental challenge in the development of brain-machine interfaces for neurological treatments. Low-frequency ultrasound stimulation can be used to modulate neuronal activity deep in the brain, especially after expressing ultrasound-sensitive proteins. But so far, no study has described an ultrasound-mediated activation strategy whose spatiotemporal resolution and acoustic intensity are compatible with the mandatory needs of brain-machine interfaces, particularly for visual restoration. Here we combined the expression of large-conductance mechanosensitive ion channels with uncustomary high-frequency ultrasonic stimulation to activate retinal or cortical neurons over millisecond durations at a spatiotemporal resolution and acoustic energy deposit compatible with vision restoration. The in vivo sonogenetic activation of the visual cortex generated a behaviour associated with light perception. Our findings demonstrate that sonogenetics can deliver millisecond pattern presentations via an approach less invasive than current brain-machine interfaces for visual restoration.


Asunto(s)
Expresión Génica Ectópica , Corteza Visual , Neuronas/metabolismo , Retina , Visión Ocular
14.
Cell Rep ; 42(4): 112369, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37043356

RESUMEN

To better understand how the brain allows primates to perform various sets of tasks, the ability to simultaneously record neural activity at multiple spatiotemporal scales is challenging but necessary. However, the contribution of single-unit activities (SUAs) to neurovascular activity remains to be fully understood. Here, we combine functional ultrasound imaging of cerebral blood volume (CBV) and SUA recordings in visual and fronto-medial cortices of behaving macaques. We show that SUA provides a significant estimate of the neurovascular response below the typical fMRI spatial resolution of 2mm3. Furthermore, our results also show that SUAs and CBV activities are statistically uncorrelated during the resting state but correlate during tasks. These results have important implications for interpreting functional imaging findings while one constructs inferences of SUA during resting state or tasks.


Asunto(s)
Volumen Sanguíneo Cerebral , Circulación Cerebrovascular , Animales , Circulación Cerebrovascular/fisiología , Encéfalo/fisiología , Mapeo Encefálico/métodos , Primates , Imagen por Resonancia Magnética/métodos , Neuronas/fisiología , Cognición
15.
J Neuroinflammation ; 20(1): 28, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36755326

RESUMEN

Retinal melanosome/melanolipofuscin-containing cells (MCCs), clinically visible as hyperreflective foci (HRF) and a highly predictive imaging biomarker for the progression of age-related macular degeneration (AMD), are widely believed to be migrating retinal pigment epithelial (RPE) cells. Using human donor tissue, we identify the vast majority of MCCs as melanophages, melanosome/melanolipofuscin-laden mononuclear phagocytes (MPs). Using serial block-face scanning electron microscopy, RPE flatmounts, bone marrow transplantation and in vitro experiments, we show how retinal melanophages form by the transfer of melanosomes from the RPE to subretinal MPs when the "don't eat me" signal CD47 is blocked. These melanophages give rise to hyperreflective foci in Cd47-/--mice in vivo, and are associated with RPE dysmorphia similar to intermediate AMD. Finally, we show that Cd47 expression in human RPE declines with age and in AMD, which likely participates in melanophage formation and RPE decline. Boosting CD47 expression in AMD might protect RPE cells and delay AMD progression.


Asunto(s)
Antígeno CD47 , Degeneración Macular , Humanos , Animales , Ratones , Antígeno CD47/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Degeneración Macular/metabolismo , Retina/metabolismo , Tomografía de Coherencia Óptica/métodos
16.
Prog Retin Eye Res ; 93: 101155, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36669906

RESUMEN

Myopia is the most common eye disorder, caused by heterogeneous genetic and environmental factors. Rare progressive and stationary inherited retinal disorders are often associated with high myopia. Genes implicated in myopia encode proteins involved in a variety of biological processes including eye morphogenesis, extracellular matrix organization, visual perception, circadian rhythms, and retinal signaling. Differentially expressed genes (DEGs) identified in animal models mimicking myopia are helpful in suggesting candidate genes implicated in human myopia. Complete congenital stationary night blindness (cCSNB) in humans and animal models represents an ON-bipolar cell signal transmission defect and is also associated with high myopia. Thus, it represents also an interesting model to identify myopia-related genes, as well as disease mechanisms. While the origin of night blindness is molecularly well established, further research is needed to elucidate the mechanisms of myopia development in subjects with cCSNB. Using whole transcriptome analysis on three different mouse models of cCSNB (in Gpr179-/-, Lrit3-/- and Grm6-/-), we identified novel actors of the retinal signaling cascade, which are also novel candidate genes for myopia. Meta-analysis of our transcriptomic data with published transcriptomic databases and genome-wide association studies from myopia cases led us to propose new biological/cellular processes/mechanisms potentially at the origin of myopia in cCSNB subjects. The results provide a foundation to guide the development of pharmacological myopia therapies.


Asunto(s)
Enfermedades Hereditarias del Ojo , Enfermedades Genéticas Ligadas al Cromosoma X , Miopía , Ceguera Nocturna , Animales , Ratones , Humanos , Ceguera Nocturna/genética , Estudio de Asociación del Genoma Completo , Electrorretinografía/métodos , Mutación , Enfermedades Hereditarias del Ojo/genética , Enfermedades Hereditarias del Ojo/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Miopía/genética , Proteínas de la Membrana/genética
18.
Front Cell Neurosci ; 17: 1224558, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38269118

RESUMEN

Targeted electric signal use for disease diagnostics and treatment is emerging as a healthcare game-changer. Besides arrhythmias, treatment-resistant epilepsy and chronic pain, blindness, and perhaps soon vision loss, could be among the pathologies that benefit from bioelectronic medicine. The electroretinogram (ERG) technique has long demonstrated its role in diagnosing eye diseases and early stages of neurodegenerative diseases. Conspicuously, ERG applications are all based on light-induced responses. However, spontaneous, intrinsic activity also originates in retinal cells. It is a hallmark of degenerated retinas and its alterations accompany obesity and diabetes. To the extent that variables extracted from the resting activity of the retina measured by ERG allow the predictive diagnosis of risk factors for type 2 diabetes. Here, we provided a comparison of the baseline characteristics of intrinsic oscillatory activity recorded by ERGs in mice, rats, and humans, as well as in several rat strains, and explore whether zebrafish exhibit comparable activity. Their pattern was altered in neurodegenerative models including the cuprizone-induced demyelination model in mice as well as in the Royal College of Surgeons (RCS-/-) rats. We also discuss how the study of their properties may pave the way for future research directions and treatment approaches for retinopathies, among others.

19.
Sci Rep ; 12(1): 19515, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36376408

RESUMEN

Fifty million people worldwide are affected by dementia, a heterogeneous neurodegenerative condition encompassing diseases such as Alzheimer's, vascular dementia, and Parkinson's. For them, cognitive decline is often the first marker of the pathology after irreversible brain damage has already occurred. Researchers now believe that structural and functional alterations of the brain vasculature could be early precursors of the diseases and are looking at how functional imaging could provide an early diagnosis years before irreversible clinical symptoms. In this preclinical pilot study, we proposed using functional ultrasound (fUS) on the retina to assess neurovascular alterations non-invasively, bypassing the skull limitation. We demonstrated for the first time the use of functional ultrasound in the retina and applied it to characterize the retinal hemodynamic response function in vivo in rats following a visual stimulus. We then demonstrated that retinal fUS could measure robust neurovascular coupling alterations between wild-type rats and TgF344-AD rat models of Alzheimer's disease. We observed an average relative increase in blood volume of 21% in the WT versus 37% for the TG group (p = 0.019). As a portable, non-invasive and inexpensive technique, rfUS is a promising functional screening tool in clinics for dementia years before symptoms.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Ratas , Proyectos Piloto , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/patología , Retina/diagnóstico por imagen , Retina/patología , Ultrasonografía
20.
Redox Biol ; 57: 102506, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36270186

RESUMEN

The aim of our work was to study whether taurine administration has neuroprotective effects in dystrophic Royal College of Surgeons (RCS) rats, suffering retinal degeneration secondary to impaired retinal pigment epithelium phagocytosis caused by a MERTK mutation. Dystrophic RCS-p + female rats (n = 36) were divided into a non-treated group (n = 16) and a treated group (n = 20) that received taurine (0.2 M) in drinking water from postnatal day (P)21 to P45, when they were processed. Retinal function was assessed with electroretinogram. Retinal morphology was assessed in cross-sections using immunohistochemical techniques to label photoreceptors, retinal microglial and macroglial cells, active zones of conventional and ribbon synaptic connections, and oxidative stress. Retinal pigment epithelium function was examined using intraocular fluorogold injections. Our results document that taurine treatment increases taurine plasma levels and photoreceptor survival in dystrophic rats. The number of photoreceptor nuclei rows at P45 was 3-5 and 6-11 in untreated and treated animals, respectively. Electroretinograms showed increases of 70% in the rod response, 400% in the a-wave amplitude, 30% in the b-wave amplitude and 75% in the photopic b-wave response in treated animals. Treated animals also showed decreased numbers of microglial cells in the outer retinal layers, decreased glial fibrillary acidic protein (GFAP) expression in Müller cells, decreased oxidative stress in the outer and inner nuclear layers and improved maintenance of synaptic connections. Treated animals showed increased FG phagocytosis in the retinal pigment epithelium cells. In conclusion, systemic taurine treatment decreases photoreceptor degeneration and increases electroretinographic responses in dystrophic RCS rats and these effects may be mediated through various neuroprotective mechanisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...