Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Med Chem ; 65(22): 15263-15281, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36346705

RESUMEN

Phenotypic drug discovery (PDD) continues to fuel the research and development pipelines with first-in-class therapeutic modalities, but success rates critically depend on the quality of the underlying model system. Here, we employed a stem cell-based approach for the target-agnostic, yet pathway-centric discovery of small-molecule cytokine signaling activators to act as morphogens during development and regeneration. Unbiased screening identified triazolo[1,5-c]quinazolines as a new-in-class in vitro and in vivo active amplifier of the bone morphogenetic protein (BMP) pathway. Cellular BMP outputs were stimulated via enhanced and sustained availability of BMP-Smad proteins, strictly dependent on a minimal BMP input. Holistic target deconvolution unveiled a unique mechanism of dual targeting of casein kinase 1 and phosphatidyl inositol 3-kinase isoforms as key effectors for efficient amplification of osteogenic BMP signaling. This work underscores the asset of PDD to discover unrecognized polypharmacology signatures, in this case significantly expanding the chemical and druggable space of BMP modulators.


Asunto(s)
Proteínas Morfogenéticas Óseas , Quinazolinas , Triazoles , Proteína Morfogenética Ósea 2/metabolismo , Proteínas Morfogenéticas Óseas/efectos de los fármacos , Proteínas Morfogenéticas Óseas/metabolismo , Diferenciación Celular , Osteogénesis , Quinazolinas/farmacología , Proteínas Smad/metabolismo , Triazoles/farmacología
2.
Nat Commun ; 13(1): 401, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35058438

RESUMEN

Eukaryotic deubiquitinases are important regulators of ubiquitin signaling and can be subdivided into several structurally distinct classes. The ZUFSP family, with ZUP1 as its sole human member, has a modular architecture with a core catalytic domain highly active against the ubiquitin-derived peptide RLRGG, but not against ubiquitin itself. Ubiquitin recognition is conferred by additional non-catalytic domains, making full-length ZUP1 active against long K63-linked chains. However, non-mammalian ZUFSP family members contain different ubiquitin-binding domains in their N-terminal regions, despite their high conservation within the catalytic domain. Here, by working with representative ZUFSP family members from insects, fungi and plants, we show that different N-terminal domains are associated with different linkage preferences. Biochemical and structural studies suggest that the acquisition of two family-specific proximal domains have changed the default K48 preference of the ZUFSP family to the K63 preference observed in ZUP1 and its insect homolog. Additional N-terminal zinc finger domains promote chain cleavage without changing linkage-specificity.


Asunto(s)
Enzimas Desubicuitinizantes/química , Enzimas Desubicuitinizantes/metabolismo , Animales , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Cristalografía por Rayos X , Humanos , Unión Proteica , Dominios Proteicos , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Especificidad de la Especie , Especificidad por Sustrato , Tribolium/enzimología , Ubiquitina/metabolismo
3.
EMBO J ; 39(19): e103889, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32815200

RESUMEN

Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9-mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments.


Asunto(s)
Adenilato Quinasa/metabolismo , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas/metabolismo , Proteínas Mitocondriales/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis , Células HEK293 , Células HeLa , Humanos , Transporte de Proteínas
4.
Nat Commun ; 11(1): 687, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-32019926

RESUMEN

Glutamine fructose-6-phosphate amidotransferase (GFAT) is the key enzyme in the hexosamine pathway (HP) that produces uridine 5'-diphospho-N-acetyl-D-glucosamine (UDP-GlcNAc), linking energy metabolism with posttranslational protein glycosylation. In Caenorhabditis elegans, we previously identified gfat-1 gain-of-function mutations that elevate UDP-GlcNAc levels, improve protein homeostasis, and extend lifespan. GFAT is highly conserved, but the gain-of-function mechanism and its relevance in mammalian cells remained unclear. Here, we present the full-length crystal structure of human GFAT-1 in complex with various ligands and with important mutations. UDP-GlcNAc directly interacts with GFAT-1, inhibiting catalytic activity. The longevity-associated G451E variant shows drastically reduced sensitivity to UDP-GlcNAc inhibition in enzyme activity assays. Our structural and functional data point to a critical role of the interdomain linker in UDP-GlcNAc inhibition. In mammalian cells, the G451E variant potently activates the HP. Therefore, GFAT-1 gain-of-function through loss of feedback inhibition constitutes a potential target for the treatment of age-related proteinopathies.


Asunto(s)
Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/química , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/metabolismo , Hexosaminas/metabolismo , Retroalimentación Fisiológica , Glutamina-Fructosa-6-Fosfato Transaminasa (Isomerizadora)/genética , Glicosilación , Hexosaminas/química , Humanos , Ligandos , Conformación Proteica , Proteostasis , Uridina Difosfato N-Acetilglucosamina/química , Uridina Difosfato N-Acetilglucosamina/metabolismo
5.
J Biol Chem ; 294(30): 11525-11535, 2019 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-31182482

RESUMEN

Pro-Pro endopeptidase-1 (PPEP-1) is a secreted metalloprotease from the bacterial pathogen Clostridium difficile that cleaves two endogenous adhesion proteins. PPEP-1 is therefore important for bacterial motility and hence for efficient gut colonization during infection. PPEP-1 exhibits a unique specificity for Pro-Pro peptide bonds within the consensus sequence VNP↓PVP. In this study, we combined information from crystal and NMR structures with mutagenesis and enzyme kinetics to investigate the mechanism and substrate specificity of PPEP-1. Our analyses revealed that the substrate-binding cleft of PPEP-1 is shaped complementarily to the major conformation of the substrate in solution. We found that it possesses features that accept a tertiary amide and help discriminate P1' residues by their amide hydrogen bond-donating potential. We also noted that residues Lys-101, Trp-103, and Glu-184 are crucial for proteolytic activity. Upon substrate binding, these residues position a flexible loop over the substrate-binding cleft and modulate the second coordination sphere of the catalytic zinc ion. On the basis of these findings, we propose an induced-fit model in which prestructured substrates are recognized followed by substrate positioning within the active-site cleft and a concomitant increase in the Lewis acidity of the catalytic Zn2+ ion. In conclusion, our findings provide detailed structural and mechanistic insights into the substrate recognition and specificity of PPEP-1 from the common gut pathogen C. difficile.


Asunto(s)
Proteínas Bacterianas/metabolismo , Clostridioides difficile/enzimología , Endopeptidasas/metabolismo , Prolina/química , Proteínas Bacterianas/química , Endopeptidasas/química , Enlace de Hidrógeno , Cinética , Conformación Proteica , Proteolisis , Especificidad por Sustrato
6.
Photochem Photobiol Sci ; 18(6): 1398-1407, 2019 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-30924488

RESUMEN

In photopharmacology, photoswitchable compounds including azobenzene or other diarylazo moieties exhibit bioactivity against a target protein typically in the slender E-configuration, whereas the rather bulky Z-configuration usually is pharmacologically less potent. Herein we report the design, synthesis and photochemical/inhibitory characterization of new photoswitchable kinase inhibitors targeting p38α MAPK and CK1δ. A well characterized inhibitor scaffold was used to attach arylazo- and diazocine moieties. When the isolated isomers, or the photostationary state (PSS) of isomers, were tested in commonly used in vitro kinase assays, however, only small differences in activity were observed. X-ray analyses of ligand-bound p38α MAPK and CK1δ complexes revealed dynamic conformational adaptations of the protein with respect to both isomers. More importantly, irreversible reduction of the azo group to the corresponding hydrazine was observed. Independent experiments revealed that reducing agents such as DTT (dithiothreitol) and GSH (glutathione) that are typically used for protein stabilization in biological assays were responsible. Two further sources of error are the concentration dependence of the E-Z-switching efficiency and artefacts due to incomplete exclusion of light during testing. Our findings may also apply to a number of previously investigated azobenzene-based photoswitchable inhibitors.


Asunto(s)
Azocinas/farmacología , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Imidazoles/farmacología , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Tiazoles/farmacología , Azocinas/química , Quinasa Idelta de la Caseína/metabolismo , Relación Dosis-Respuesta a Droga , Imidazoles/química , Ligandos , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Modelos Moleculares , Estructura Molecular , Procesos Fotoquímicos , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Tiazoles/química
7.
Molecules ; 24(5)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30832206

RESUMEN

In this study, we report on the modification of a 3,4-diaryl-isoxazole-based CK1 inhibitor with chiral pyrrolidine scaffolds to develop potent and selective CK1 inhibitors. The pharmacophore of the lead structure was extended towards the ribose pocket of the adenosine triphosphate (ATP) binding site driven by structure-based drug design. For an upscale compatible multigram synthesis of the functionalized pyrrolidine scaffolds, we used a chiral pool synthetic route starting from methionine. Biological evaluation of key compounds in kinase and cellular assays revealed significant effects of the scaffolds towards activity and selectivity, however, the absolute configuration of the chiral moieties only exhibited a limited effect on inhibitory activity. X-ray crystallographic analysis of ligand-CK1δ complexes confirmed the expected binding mode of the 3,4-diaryl-isoxazole inhibitors. Surprisingly, the original compounds underwent spontaneous Pictet-Spengler cyclization with traces of formaldehyde during the co-crystallization process to form highly potent new ligands. Our data suggests chiral "ribose-like" pyrrolidine scaffolds have interesting potential for modifications of pharmacologically active compounds.


Asunto(s)
Quinasa Idelta de la Caseína/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores Enzimáticos/química , Isoxazoles/química , Adenosina Trifosfato/química , Sitios de Unión , Quinasa Idelta de la Caseína/química , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Humanos , Isoxazoles/síntesis química , Isoxazoles/farmacología , Ligandos , Complejos Multiproteicos/química , Pirrolidinas/química , Relación Estructura-Actividad
8.
Aquat Toxicol ; 205: 140-147, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30384195

RESUMEN

Mass developments of toxin-producing cyanobacteria are frequently observed in freshwater ecosystems due to eutrophication and global warming. These mass developments can partly be attributed to cyanobacterial toxins, such as protease inhibitors (PIs), which inhibit digestive serine proteases of Daphnia, the major herbivore of phytoplankton and cyanobacteria. To date, mechanisms of this inhibition in the gut of the crustacean Daphnia magna are not known. Here, we characterize a single serine protease, chymotrypsin 448 (CT448), which is present in the gut of the crustacean D. magna. Sequence alignments with human serine proteases revealed that CT448 has a putative N-terminal pro-peptide which is extended compared to the mammalian homologs and within this pro-peptide two N-linked glycosylation motifs were found. CT448 was heterologously expressed in Sf21 insect cells using a baculovirus expression system for optimized protein production and secretion into the medium. The protein was purified via a one-step affinity chromatography, which resulted in a protein yield of 3.45 mg/l medium. The inactive precursor (zymogen) could be activated by tryptic digestion. This is the first example of a recombinant expression of an active crustacean serine protease, which functions in the gut of Daphnia. Proteomic identification of protease cleavage sites (PICS) and hydrolysation of various synthetic substrates showed that CT448 is a chymotrypsin-like elastase. In this study, we confirm that CT448 is a target of cyanobacterial protease inhibitors. Local evolutionary modifications of CT448 might render this proteolytic enzyme less susceptible against cyanobacterial secondary metabolites and might improve the fitness of Daphnia during cyanobacterial blooms.


Asunto(s)
Cianobacterias/fisiología , Daphnia/enzimología , Daphnia/microbiología , Serina Proteasas/genética , Serina Proteasas/metabolismo , Animales , Proteómica , Contaminantes Químicos del Agua/toxicidad
9.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 5): 307-314, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717999

RESUMEN

The identification of initial lead conditions for successful protein crystallization is crucial for structural studies using X-ray crystallography. In order to reduce the number of false-negative conditions, an emerging number of fluorescence-based methods have been developed which allow more efficient identification of protein crystals and help to distinguish them from salt crystals. Detection of the native tryptophan fluorescence of protein crystals is one of the most widely used methods. However, this method can fail owing to the properties of the crystallized protein or the chemical composition of the crystallization trials. Here, a simple, fast and cost-efficient method employing 2,2,2-trichloroethanol (TCE) has been developed. It can be performed with a standard UV-light microscope and can be applied to cases in which detection of native tryptophan fluorescence fails. In four test cases this method had no effect on the diffraction properties of the crystals and no structural changes were observed. Further evidence is provided that TCE can be added to crystallization trials during their preparation, making this method compatible with high-throughput approaches.


Asunto(s)
Etilenclorhidrina/análogos & derivados , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Etilenclorhidrina/metabolismo , Microscopía Fluorescente/métodos , Estructura Secundaria de Proteína
10.
J Med Chem ; 61(9): 4087-4102, 2018 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-29630366

RESUMEN

Inhibitors of Wnt production (IWPs) are known antagonists of the Wnt pathway, targeting the membrane-bound O-acyltransferase porcupine (Porcn) and thus preventing a crucial Wnt ligand palmitoylation. Since IWPs show structural similarities to benzimidazole-based CK1 inhibitors, we hypothesized that IWPs could also inhibit CK1 isoforms. Molecular modeling revealed a plausible binding mode of IWP-2 in the ATP binding pocket of CK1δ which was confirmed by X-ray analysis. In vitro kinase assays demonstrated IWPs to be ATP-competitive inhibitors of wtCK1δ. IWPs also strongly inhibited the gatekeeper mutant M82FCK1δ. When profiled in a panel of 320 kinases, IWP-2 specifically inhibited CK1δ. IWP-2 and IWP-4 also inhibited the viability of various cancer cell lines. By a medicinal chemistry approach, we developed improved IWP-derived CK1 inhibitors. Our results suggest that the effects of IWPs are not limited to Porcn, but also might influence CK1δ/ε-related pathways.


Asunto(s)
Adenosina Trifosfato/metabolismo , Caseína Cinasa 1 épsilon/antagonistas & inhibidores , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Diseño de Fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Wnt/biosíntesis , Bencimidazoles/química , Bencimidazoles/metabolismo , Bencimidazoles/farmacología , Unión Competitiva , Caseína Cinasa 1 épsilon/química , Caseína Cinasa 1 épsilon/metabolismo , Quinasa Idelta de la Caseína/química , Quinasa Idelta de la Caseína/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Modelos Moleculares , Conformación Proteica , Inhibidores de Proteínas Quinasas/metabolismo
11.
Nat Commun ; 9(1): 799, 2018 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-29476094

RESUMEN

Deubiquitinating enzymes (DUBs) regulate ubiquitin signaling by trimming ubiquitin chains or removing ubiquitin from modified substrates. Similar activities exist for ubiquitin-related modifiers, although the enzymes involved are usually not related. Here, we report human ZUFSP (also known as ZUP1 and C6orf113) and fission yeast Mug105 as founding members of a DUB family different from the six known DUB classes. The crystal structure of human ZUFSP in covalent complex with propargylated ubiquitin shows that the DUB family shares a fold with UFM1- and Atg8-specific proteases, but uses a different active site more similar to canonical DUB enzymes. ZUFSP family members differ widely in linkage specificity through differential use of modular ubiquitin-binding domains (UBDs). While the minimalistic Mug105 prefers K48 chains, ZUFSP uses multiple UBDs for its K63-specific endo-DUB activity. K63 specificity, localization, and protein interaction network suggest a role for ZUFSP in DNA damage response.


Asunto(s)
Enzimas Desubicuitinizantes/química , Schizosaccharomyces/enzimología , Dominio Catalítico , Enzimas Desubicuitinizantes/genética , Enzimas Desubicuitinizantes/metabolismo , Humanos , Familia de Multigenes , Unión Proteica , Dominios Proteicos , Schizosaccharomyces/química , Schizosaccharomyces/genética , Especificidad por Sustrato , Ubiquitina/metabolismo
12.
Neurol Genet ; 4(1): e209, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29379881

RESUMEN

OBJECTIVE: To ascertain the genetic and functional basis of complex autosomal recessive cerebellar ataxia (ARCA) presented by 2 siblings of a consanguineous family characterized by motor neuropathy, cerebellar atrophy, spastic paraparesis, intellectual disability, and slow ocular saccades. METHODS: Combined whole-genome linkage analysis, whole-exome sequencing, and focused screening for identification of potential causative genes were performed. Assessment of the functional consequences of the mutation on protein function via subcellular fractionation, size-exclusion chromatography, and fluorescence microscopy were done. A zebrafish model, using Morpholinos, was generated to study the pathogenic effect of the mutation in vivo. RESULTS: We identified a biallelic 3-bp deletion (p.K19del) in CHP1 that cosegregates with the disease. Neither focused screening for CHP1 variants in 2 cohorts (ARCA: N = 319 and NeurOmics: N = 657) nor interrogating GeneMatcher yielded additional variants, thus revealing the scarcity of CHP1 mutations. We show that mutant CHP1 fails to integrate into functional protein complexes and is prone to aggregation, thereby leading to diminished levels of soluble CHP1 and reduced membrane targeting of NHE1, a major Na+/H+ exchanger implicated in syndromic ataxia-deafness. Chp1 deficiency in zebrafish, resembling the affected individuals, led to movement defects, cerebellar hypoplasia, and motor axon abnormalities, which were ameliorated by coinjection with wild-type, but not mutant, human CHP1 messenger RNA. CONCLUSIONS: Collectively, our results identified CHP1 as a novel ataxia-causative gene in humans, further expanding the spectrum of ARCA-associated loci, and corroborated the crucial role of NHE1 within the pathogenesis of these disorders.

13.
Molecules ; 22(4)2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28338621

RESUMEN

The involvement of protein kinase CK1δ in the pathogenesis of severe disorders such as Alzheimer's disease, amyotrophic lateral sclerosis, familial advanced sleep phase syndrome, and cancer has dramatically increased interest in the development of effective small molecule inhibitors for both therapeutic application and basic research. Unfortunately, the design of CK1 isoform-specific compounds has proved to be highly complicated due to the existence of six evolutionarily conserved human CK1 members that possess similar, different, or even opposite physiological and pathophysiological implications. Consequently, only few potent and selective CK1δ inhibitors have been reported so far and structurally divergent approaches are urgently needed in order to establish SAR that might enable complete discrimination of CK1 isoforms and related p38α MAPK. In this study we report on design and characterization of optimized 4,5-diarylimidazoles as highly effective ATP-competitive inhibitors of CK1δ with compounds 11b (IC50 CK1δ = 4 nM, IC50 CK1ε = 25 nM), 12a (IC50 CK1δ = 19 nM, IC50 CK1ε = 227 nM), and 16b (IC50 CK1δ = 8 nM, IC50 CK1ε = 81 nM) being among the most potent CK1δ-targeting agents published to date. Inhibitor compound 11b, displaying potential as a pharmacological tool, has further been profiled over a panel of 321 protein kinases exhibiting high selectivity. Cellular efficacy has been evaluated in human pancreatic cancer cell lines Colo357 (EC50 = 3.5 µM) and Panc89 (EC50 = 1.5 µM). SAR is substantiated by X-ray crystallographic analysis of 16b in CK1δ and 11b in p38α.


Asunto(s)
Quinasa Idelta de la Caseína/antagonistas & inhibidores , Imidazoles/farmacología , Proteína Quinasa 14 Activada por Mitógenos/química , Inhibidores de Proteínas Quinasas/farmacología , Adenosina Trifosfato/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Humanos , Imidazoles/síntesis química , Imidazoles/química , Concentración 50 Inhibidora , Modelos Moleculares , Filogenia , Inhibidores de Proteínas Quinasas/química
14.
J Vis Exp ; (118)2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-28060332

RESUMEN

New therapies are needed to treat Clostridium difficile infections that are a major threat to human health. The C. difficile metalloprotease PPEP-1 is a target for future development of inhibitors to decrease the virulence of the pathogen. To perform biophysical and structural characterization as well as inhibitor screening, large amounts of pure and active protein will be needed. We have developed a protocol for efficient production and purification of PPEP-1 by the use of E. coli as the expression host yielding sufficient amounts and purity of protein for crystallization and structure determination. Additionally, using microseeding, highly intergrown crystals of PPEP-1 can be grown to well-ordered crystals suitable for X-ray diffraction analysis. The methods could also be used to produce other recombinant proteins and to study the structures of other proteins producing intergrown crystals.


Asunto(s)
Proteínas Bacterianas/química , Clostridioides difficile/enzimología , Metaloproteasas/química , Cristalización , Cristalografía por Rayos X , Escherichia coli , Proteínas Recombinantes/química , Zinc
15.
Structure ; 23(9): 1632-1642, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26211609

RESUMEN

Clostridium difficile is a pathogenic bacterium causing gastrointestinal diseases from mild diarrhea to toxic megacolon. In common with other pathogenic bacteria, C. difficile secretes proteins involved in adhesion, colonization, and dissemination. The recently identified Zmp1 is an extracellular metalloprotease showing a unique specificity for Pro-Pro peptide bonds. The endogenous substrates of Zmp1 are two surface proteins implicated in adhesion of C. difficile to surface proteins of human cells. Thus, Zmp1 is believed to be involved in the regulation of the adhesion-motility balance of C. difficile. Here, we report crystal structures of Zmp1 from C. difficile in its unbound and peptide-bound forms. The structure analysis revealed a fold similar to Bacillus anthracis lethal factor. Crystal structures in the open and closed conformation of the S-loop shed light on the mode of binding of the substrate, and reveal important residues for substrate recognition and the strict specificity of Zmp1 for Pro-Pro peptide bonds.


Asunto(s)
Proteínas Bacterianas/química , Clostridioides difficile/fisiología , Metaloproteasas/química , Péptidos/metabolismo , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Clostridioides difficile/química , Clostridioides difficile/enzimología , Metaloproteasas/metabolismo , Modelos Moleculares , Péptidos/química , Prolina/química , Prolina/metabolismo , Estructura Secundaria de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA