RESUMEN
Background: Assessing the role of oxytocin (OT) in the regulation of social interaction is a promising area that opens up new opportunities for studying the mechanisms of developing autism spectrum disorders (ASD). Aim: To assess the correlation between the salivary OT level and age-related and psychopathological symptoms of children with intellectual disability (ID) and ASD. Methods: We used the clinical and psychopathological method to assess the signs of ASD based on International Classification of Diseases (ICD-10), the severity of ASD was specified by the selected Russian type version "Childhood Autism Rating Scale" (CARS). Patients of both groups had an IQ score below 70 points. Results: The median and interquartile range of salivary OT levels in patients with ID and ASD were 23.897 [14.260-59.643] pg/mL, and in the group ID without ASD - Me = 50.896 [33.502-83.774] pg/mL (p = 0.001). The severity of ASD on the CARS scale Me = 51.5 [40.75-56.0] score in the group ID with ASD, and in the group ID without ASD-at the level of Me = 32 [27.0-38.0] points (p < 0.001). According to the results of correlation-regression analysis in the main group, a direct correlation was established between salivary OT level and a high degree of severity of ASD Rho = 0.435 (p = 0.005). There was no correlation between the salivary OT level and intellectual development in the group ID with ASD, Rho = 0.013 (p = 0.941) and we have found a relationship between oxytocin and intellectual development in the group ID without ASD, Rho = 0.297 (p = 0.005). There was no correlation between salivary OT and age, ASD and age. Conclusion: The results of this study indicate that patients in the group ID with ASD demonstrated a lower level of salivary OT concentration and a direct relationship between the maximum values of this indicator and the severity of autistic disorders, in contrast to patients in the group ID without ASD.
RESUMEN
Long-span bridges have traditionally employed suspension or cable-stayed forms, comprising vertical pylons and networks of cables supporting a bridge deck. However, the optimality of such forms over very long spans appears never to have been rigorously assessed, and the theoretically optimal form for a given span carrying gravity loading has remained unknown. To address this we here describe a new numerical layout optimization procedure capable of intrinsically modelling the self-weight of the constituent structural elements, and use this to identify the form requiring the minimum volume of material for a given span. The bridge forms identified are complex and differ markedly to traditional suspension and cable-stayed bridge forms. Simplified variants incorporating split pylons are also presented. Although these would still be challenging to construct in practice, a benefit is that they are capable of spanning much greater distances for a given volume of material than traditional suspension and cable-stayed forms employing vertical pylons, particularly when very long spans (e.g. over 2 km) are involved.
RESUMEN
Dendritic cells (DCs) are well-known for their functions in orchestrating the innate and adaptive arms of immune defense. However, under certain conditions, DCs can exert tumoricidal activity. We have elucidated the mechanism of tumor suppression by TLR4-activated bone marrow-derived DCs (BMDCs) isolated from BALB/c mice. We identified that two distinct subsets of BMDCs (CD11b+CD11c+I-A/Eint and CD11b+CD11c+I-A/Ehigh) have different cytotoxic mechanisms of action. The cytotoxicity of the former subset is mediated through NO and reactive oxygen species and type I IFN (IFN-ß), whereas the latter subset acts only through IFN-ß. TLR4 agonists, LPS or pharmaceutical-grade ImmunoMax, activate CD11c+ BMDCs, which, in turn, directly kill 4T1 mouse breast cancer cells or inhibit their proliferation in an MHC-independent manner. These data define two populations of BMDCs with different mechanisms of direct cytotoxicity, as well as suggest that the I-A/Eint subset could be less susceptible to counteracting mechanisms in the tumor microenvironment and support investigation of similar subsets in human DCs.
Asunto(s)
Médula Ósea/metabolismo , Células Dendríticas/metabolismo , Receptor Toll-Like 4/agonistas , Animales , Células de la Médula Ósea/metabolismo , Antígeno CD11c/metabolismo , Línea Celular Tumoral , Células Cultivadas , Femenino , Interferón beta/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microambiente Tumoral/fisiologíaRESUMEN
Synthetic 14 AA peptide (Gepon) derived from the hinge region of ezrin, a protein that links cell surface molecules to intracellular actin filaments, accelerates and facilitates wound and ulcer healing in clinical applications. However, the molecular mechanisms underlying this phenomenon and involved in enhanced healing of wounds with Gepon are not yet understood. The purpose of current study was to investigate intracellular signaling pathways involved in the effect of this peptide on wild type and genetically modified (CD44 KO) NIH/3T3 embryonic mouse fibroblasts. Gepon treatment of NIH/3T3 cells resulted in morphological and biochemical changes, characteristic of differentiated fibroblasts. While treatment of NIH/3T3 cells with TGF-ß1 triggered the activation of both canonical and non-canonical signaling pathways, exposure of fibroblasts to Gepon activated only the ERK1/2 dependent pathway without modulating SMAD dependent signaling pathway. Knocking out hyaluronic acid CD44 receptor did not change Gepon or TGF-ß1 dependent activation of intracellular signaling pathways and assembling of α-SMA-positive filaments. Gepon dependent differentiation of NIH/3T3 fibroblasts is based on activation of ERK1/2 kinase, non-canonical intracellular signaling pathway. Our data suggest that the treatment of fibroblasts with Gepon triggers activation of the non-canonical (SMAD independent) intracellular signaling pathway that involves ERK1/2kinase phosphorylation. Activation of the MAPK signaling pathway and the increase in formation of α-SMA containing stress filaments induced by Gepon were independent on presence of CD44 receptor in NIH/3T3 fibroblasts. Thus, our observation designates the significance and sufficiency of MAPK pathway mediated activation of fibroblasts with Gepon for healing of erosion, ulcers and wounds.