RESUMEN
Levan-type fructooligosaccharides (LFOS) exhibit significant biological activities and selectively promote the growth of certain beneficial bacteria. Levanase is an important enzyme for LFOS production. In this study, two isoforms of levanases, exo- and endo-type depolymerizing enzymes, from Bacillus subtilis HM7 isolated from Dynastes hercules larvae excrement were cloned, expressed, and characterized. The synergistic effect on the levan hydrolysis and kinetic properties of both isoforms were evaluated, indicating their cooperation in levan metabolism, where the endo-levanase catalyzes a rate-limiting step. In addition, homology models and molecular dynamics simulations revealed the key amino residues of the enzymes for levan binding and catalysis. It was found that both isoforms possessed distinct binding residues in the active sites, suggesting the importance of the specificity of the enzymes. Finally, we demonstrated the potential of endo-type levanase in LFOS synthesis using a one-pot reaction with levansucrase. Overall, this study fills the knowledge gap in understanding levanase's mechanism, making an important contribution to the fields of food science and biotechnology.
Asunto(s)
Bacillus subtilis , Glicósido Hidrolasas , Oligosacáridos , Bacillus subtilis/enzimología , Oligosacáridos/biosíntesis , Oligosacáridos/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Cinética , Fructanos/biosíntesis , Fructanos/química , Hidrólisis , Simulación de Dinámica Molecular , Especificidad por Sustrato , Hexosiltransferasas/metabolismo , Hexosiltransferasas/química , Hexosiltransferasas/genética , CatálisisRESUMEN
The flexibility of protein structure plays a crucial role in enzyme stability and catalysis. Among the amino acids, glycine is particularly important in conferring flexibility to proteins. In this study, the effects of flexible glycine residues in Lactobacillus reuteri 121 inulosucrase (LrInu) on stability and inulin profile were investigated through glycine-to-proline substitutions. Molecular dynamics (MD) simulations were employed to discover the flexible glycine residues, and eight glycine residues, including Gly217, Gly298, Gly330, Gly416, Gly450, Gly624, Gly627, Gly629, were selected for site-directed mutagenesis. The results demonstrated significant changes in both thermostability and inulin profiles of the variants. Particularly, the G624P and G627P variants showed reduced production of long-chain oligosaccharides compared to the WT. This can be ascribed to the increased rigidity of the active site, which is crucial for the induction-fit mechanism. Overall, this study provides valuable insights into the role of flexible glycine residues in the activity, stability, and inulin synthesis of LrInu.
RESUMEN
Due to its bioactivity and versatile applications, levan has appeared as a promising biomaterial. Levansucrase is responsible for the conversion of sucrose into levan. With the goal of enhancing levan production, the strategy for enhancing the stability of levansucrase is being intensively studied. To make proteins more stable under high temperatures, proline, the most rigid residue, can be introduced into previously flexible regions. Herein, G249, D250, N251, and H252 on the flexible coil close to the calcium binding site of Bacillus licheniformis levansucrase were replaced with proline. Mutations at G249P greatly enhance both the enzyme's thermodynamic and kinetic stability, while those at H252P improve solely the enzyme's kinetic stability. GPC analysis revealed that G249P synthesize more levan, but H252P generate primarily oligosaccharides. Molecular dynamics simulations (MD) and MM/GBSA analysis revealed that G249P mutation increased not only the stability of levansucrase, but also affinity toward fructan.
Asunto(s)
Calcio , Simulación de Dinámica Molecular , Sitios de Unión , Fructanos/química , Fructanos/metabolismo , Sacarosa/metabolismoRESUMEN
Inulosucrase from Lactobacillus reuteri 121 (LrInu) exhibits promise in the synthesis of prebiotic inulin and fructooligosaccharides. However, for its use in industry, LrInu's thermostability is a crucial consideration. In this study, the computational program FireProt was used to predict the thermostable variants of LrInu. Using rational criteria, nine variants were selected for protein expression and characterization. The G237P variant was determined to be the greatest designed candidate due to its greatly enhanced stability and activity in comparison to the wild-type enzyme. The optimum temperature of G237P increased from 50 to 60°C, with an over 5-fold increase in the half-life. Spectroscopy studies revealed that the G237P mutation could prevent the structural change in LrInu caused by heat or urea treatment. Molecular dynamics (MD) simulations showed that the enhanced thermostability of the G237P variant resulted from an increase in structural rigidity and the number of native contacts within the protein molecule. In addition, G237P variant synthesizes inulin with greater efficiency than WT. KEY POINTS: ⢠Thermostable inulosucrase variant(s) were designed by Fireprot server. ⢠G237P variant showed significantly improved thermostability compared to the wild type. ⢠Inulin is synthesized more efficiently by G237P variant.
RESUMEN
Chitosan oligosaccharide (COS) is a breakdown product of chitin, a polymer of N-acetyl-D-glucosamine. COS promotes barrier function in intestinal epithelial cells. However, the exact mechanism of COS-induced barrier function remains unknown. This study was aimed to explore the intricate signaling cascades in the junction barrier induced by COS (100 µg/mL) in human intestinal epithelial cells (T84 cells). COS (100 µg/mL) promoted tight junction assembly and increased transepithelial electrical resistance (TEER). COS inhibited FITC-dextran flux in T84 cell monolayers at 2 h, 4 h, 6 h and 24 h post treatment. In addition, the effect of COS on TEER and FITC-dextran flux was abrogated by pre-incubation of wortmannin (2 µM), an AKT (protein kinase B) inhibitor, at 2 h and 4 h post treatment, indicating that COS-induced tight junction integrity was mediated at least in part by AKT activation. COS-induced TEER was amplified at 24 h and 48 h post treatment by pre-incubation with SC79 (2.5 µM), an AKT activator. Moreover, COS induced inhibition of extracellular signal-regulated kinase (ERK) in T84 cells. Wortmannin and SC79 pre-incubation promoted ERK activation and ERK inhibition, respectively, suggesting that COS-induced ERK inhibition was mediated by AKT. Collectively, this study reveals that COS promotes junction barrier integrity via regulating PI3K/AKT and ERK signaling intricate interplay in T84 cell monolayers. COS may be beneficial in promoting junction barrier in intestinal disorders.
RESUMEN
Levan is a biopolymer composed of fructose chains covalently linked by ß-2,6 glycosidic linkages. This polymer self-assembles into a nanoparticle of uniform size, making it useful for a wide range of applications. Also, levan exhibits various biological activities such as antioxidants, anti-inflammatory, and anti-tumor, that make this polymer very attractive for biomedical application. In this study, levan synthesized from Erwinia tasmaniensis was chemically modified by glycidyl trimethylammonium chloride (GTMAC) to produce cationized nanolevan (QA-levan). The structure of the obtained GTMAC-modified levan was determined by FT-IR, 1H-NMR and elemental (CHN) analyzer. The size of the nanoparticle was calculated using the dynamic light scattering method (DLS). The formation of DNA/QA-levan polyplex was then investigated by gel electrophoresis. The modified levan was able to increase the solubility of quercetin and curcumin by 11-folds and 205-folds, respectively, compared to free compounds. Cytotoxicity of levan and QA-levan was also investigated in HEK293 cells. This finding suggests that GTMAC-modified levan should have a potential application for drug and nucleic acid delivery.
RESUMEN
Diarrhea is an important adverse effect of epidermal growth factor receptor-tyrosine kinase inhibitors, especially afatinib. Novel antidiarrheal agents are needed to reduce epidermal growth factor receptor-tyrosine kinase inhibitor-associated diarrhea to improve the quality of life and treatment outcome in cancer patients. This study aimed to investigate the anti-diarrheal activity of chitosan oligosaccharide against afatinib-induced barrier disruption and chloride secretion in human intestinal epithelial cells (T84 cells). Chitosan oligosaccharide (100 µg/mL) prevented afatinib-induced barrier disruption determined by changes in transepithelial electrical resistance and FITC-dextran flux in the T84 cell monolayers. In addition, chitosan oligosaccharide prevented afatinib-induced potentiation of cAMP-induced chloride secretion measured by short-circuit current analyses in the T84 cell monolayers. Chitosan oligosaccharide induced the activation of AMPK, a positive regulator of epithelial tight junction and a negative regulator of cAMP-induced chloride secretion. Moreover, chitosan oligosaccharide partially reversed afatinib-induced AKT inhibition without affecting afatinib-induced ERK inhibition via AMPK-independent mechanisms. Collectively, this study reveals that chitosan oligosaccharide prevents the afatinib-induced diarrheal activities in T84 cells via both AMPK-dependent and AMPK-independent mechanisms. Chitosan oligosaccharide represents a promising natural polymer-derived compound for further development of treatment for afatinib-associated diarrheas.
RESUMEN
Levan is a bioactive polysaccharide that can be synthesized by various microorganisms. In this study, the physicochemical properties and bioactivity of levan synthesized by recombinant levansucrase from Erwinia tasmaniensis were investigated. The synthesis conditions, including the enzyme concentration, substrate concentration, and temperature, were optimized. The obtained levan generally appeared as a cloudy suspension. However, it could transform into a hydrogel at concentrations exceeding 10 % (w/v). Then, ultrasonication was utilized to reduce the molecular weight and increase the bioavailability of levan. Dynamic light scattering (DLS) and gel permeation chromatography (GPC) indicated that the size of levan was significantly decreased by ultrasonication, whereas Fourier transform infrared spectroscopy, 1H-nuclear magnetic resonance, and X-ray powder diffraction revealed that the chemical structure of levan was not changed. Finally, the bioactivities of both levan forms were examined using human osteosarcoma (Saos-2) cells. The result clearly illustrated that sonicated levan had higher antiproliferative activity in Saos-2 cells than original levan. Sonicated levan also activated Toll-like receptor expression at the mRNA level. These findings suggested the important beneficial applications of sonicated levan for the development of cancer therapies.
Asunto(s)
Hexosiltransferasas , Osteosarcoma , Humanos , Ultrasonido , Hexosiltransferasas/química , Fructanos/químicaRESUMEN
α-L-rhamnosidase catalyzes hydrolysis of the terminal α-L-rhamnose from various natural rhamnoglycosides, including naringin and hesperidin, and has various applications such as debittering of citrus juices in the food industry and flavonoid derhamnosylation in the pharmaceutical industry. However, its activity is lost at high temperatures, limiting its usage. To improve Lactobacillus acidophilus α-L-rhamnosidase stability, we employed molecular dynamics (MD) to identify a highly flexible region, as evaluated by its root mean square fluctuation (RMSF) value, and computational protein design (Rosetta) to increase rigidity and favorable interactions of residues in highly flexible regions. MD results show that five regions have the highest flexibilities and were selected for design by Rosetta. Twenty-one designed mutants with the best ΔΔG at each position and ΔΔG < 0 REU were simulated at high temperature. Eight designed mutants with ΔRMSF of highly flexible regions lower than -10.0% were further simulated at the optimum temperature of the wild type. N88Q, N202V, G207D, Q209M, N211T and Y213K mutants were predicted to be more stable and could maintain their native structures better than the wild type due to increased hydrogen bond interactions of designed residues and their neighboring residues. These designed mutants are promising enzymes with high potential for stability improvement.
Asunto(s)
Glicósido Hidrolasas , Lactobacillus acidophilus , Jugos de Frutas y Vegetales , Glicósido Hidrolasas/metabolismo , Hidrólisis , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , TemperaturaRESUMEN
Consumption of a high-fat diet (HFD) not only increases the risk of metabolic syndrome but also initiates kidney injury. Lipid accumulation-induced systemic low-grade inflammation is an upstream mechanism of kidney injury associated with prediabetes. Chitosan oligosaccharide (COS) provides potent anti-obesity effects through several mechanisms including fecal lipid excretion. In this study, we investigated the effects of COS on the prevention of obesity-related complications and its ability to confer renoprotection in a prediabetic model. Rats fed on a HFD developed obesity, glucose intolerance and kidney dysfunction. COS intervention successfully ameliorated these conditions (p < 0.05) by attenuating intestinal lipid absorption and the renal inflammation-autophagy-apoptosis axis. A novel anti-inflammatory effect of COS had been demonstrated by the strengthening of intestinal barrier integrity via calcium-sensing receptor (p < 0.05). The use of COS as a supplement may be useful in reducing prediabetic complications especially renal injury and the risk of type 2 diabetes.
Asunto(s)
Quitosano , Diabetes Mellitus Tipo 2 , Estado Prediabético , Animales , Autofagia , Quitosano/metabolismo , Quitosano/farmacología , Quitosano/uso terapéutico , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa , Inflamación/metabolismo , Riñón , Lípidos , Obesidad/metabolismo , Oligosacáridos/metabolismo , Oligosacáridos/farmacología , Oligosacáridos/uso terapéutico , Estado Prediabético/complicaciones , Estado Prediabético/tratamiento farmacológico , Estado Prediabético/metabolismo , RatasRESUMEN
The ß-mannanase from Bacillus subtilis HM7 (Man26HM7) isolated from Dynastes hercules larvae excrement was cloned and expressed in Escherichia coli. Biochemical characterization shows that optimal pH and temperature for catalysis are 6.0 and 50 °C, respectively. Man26HM7 displayed excellent surfactant stability by retaining 70% of initial activity in 1%(w/v) SDS, and more than 90% of initial activity in 1%(w/v) Triton X-100 and Tween 80. Results from amino acid sequence alignment and molecular modeling suggest residue 238 of ß-mannanase as a hotspot of SDS-tolerance. Mutagenesis at the equivalent residue of another homolog, ß-mannanase from Bacillus subtilis CAe24 (Man26CAe24), significantly enhanced the SDS stability of this enzyme. Comparative computational analysis, including molecular docking and molecular dynamics simulation, were then performed to compute the binding free energy of SDS to Man26HM7, Man26CAe24, and variant enzymes. The results suggest that residue 238 of Man26HM7 is involved in SDS binding to the hydrophobic surface of ß-mannanase. This study provides not only the promising application of Man26HM7 in detergent and cleaning products but also valuable information for enhancing the surfactant stability of ß-mannanase by enzyme engineering.
Asunto(s)
Tensoactivos , beta-Manosidasa , Animales , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Clonación Molecular , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Larva/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , beta-Manosidasa/genética , beta-Manosidasa/metabolismoRESUMEN
Inulosucrase (ISC) and levansucrase (LSC) utilise sucrose and produce inulin- and levan-type fructans, respectively. This study aims to propose a new strategy to improve levan-type fructooligosaccharide (L-FOS) production. The effect of ISC/ LSC -mixed reaction was elucidated on L-FOS production. The presence of ISC in the LSC reaction significantly leads to the higher production of L-FOSs as the main products. Furthermore, the different ratios between ISC and LSC affected the distribution of L-FOSs. A greater amount of ISC compared to LSC promoted the synthesis of short-chain L-FOSs. Conversely, when LSC was increased, the synthesis of longer-chain L-FOSs was enhanced. The addition of trisaccharide mixtures obtained from either a single ISC or LSC reaction could enhance L-FOSs synthesis in the LSC reaction. Analysis of these trisaccharides revealed that most species of the oligosaccharides were similar, with 1-kestose being the major one. The supplement of only 1-kestose in the LSC reaction showed similar results to those of the reaction in the presence of trisaccharide mixtures. Moreover, the results were supported by molecular dynamics simulations. This work not only provides an improvement in L-FOS production but also revealed and supported some insights into the mechanism of fructansucrases.
Asunto(s)
Fructanos , Oligosacáridos , Hexosiltransferasas , SacarosaRESUMEN
α-Glucosidase (EC 3.2.1.20) is a carbohydrate-hydrolyzing enzyme which generally cleaves α-1,4-glycosidic bonds of oligosaccharides and starch from the nonreducing ends. In this study, the novel α-glucosidase from Weissella cibaria BBK-1 (WcAG) was biochemically and structurally characterized. WcAG belongs to glycoside hydrolase family 13 (GH13) and to the neopullanase subfamily. It exhibits distinct hydrolytic activity towards the α-1,4 linkages of short-chain oligosaccharides from the reducing end. The enzyme prefers to hydrolyse maltotriose and acarbose, while it cannot hydrolyse cyclic oligosaccharides and polysaccharides. In addition, WcAG can cleave pullulan hydrolysates and strongly exhibits transglycosylation activity in the presence of maltose. Size-exclusion chromatography and X-ray crystal structures revealed that WcAG forms a homodimer in which the N-terminal domain of one monomer is orientated in proximity to the catalytic domain of another, creating the substrate-binding groove. Crystal structures of WcAG in complexes with maltose, maltotriose and acarbose revealed a remarkable enzyme active site with accessible +2, +1 and -1 subsites, along with an Arg-Glu gate (Arg176-Glu296) in front of the active site. The -2 and -3 subsites were blocked by Met119 and Asn120 from the N-terminal domain of a different subunit, resulting in an extremely restricted substrate preference.
Asunto(s)
Oligosacáridos/metabolismo , Weissella/metabolismo , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo , Cromatografía en Gel , Maltosa/metabolismo , Weissella/enzimologíaRESUMEN
Fermentation of Lactic Acid Bacteria (LAB) is considered to be a sustainable approach for polysaccharide production. Herein, exopolysaccharide (EPS)-producing LAB strain KM01 was isolated from Thai fermented dessert, Khao Mak, which was then identified as Leuconostoc holzapfelii. High-performance anion-exchange chromatography, nuclear magnetic resonance spectroscopy and Fourier-transform infrared spectroscopy suggested that the KM01 EPS comprises α-1,6-linked glucosides. The molecular weight of KM01 EPS was around 500 kDa, but it can form large aggregates formation (MW > 2000 kDa) in an aqueous solution, judged by transmission electron microscopy and dynamic light scattering to be around 150 nm in size. Furthermore, this KM01 EPS form highly viscous hydrogels at concentrations above 5% (w/v). The formation of hydrogels and nanoparticle of KM01 EPS was found to be reversible. Finally, the suitability of KM01 EPS for biomedical applications was demonstrated by its lack of cytotoxicity and its ability to form complexes with quercetin. Unlike the common α-1,6-linked dextran, KM01 EPS can enhance the solubility of quercetin significantly.
Asunto(s)
Excipientes/química , Glucanos/química , Leuconostoc/metabolismo , Nanopartículas , Polisacáridos Bacterianos/química , Quercetina/química , Sacarosa/metabolismo , Composición de Medicamentos , Excipientes/aislamiento & purificación , Excipientes/toxicidad , Fermentación , Glucanos/aislamiento & purificación , Glucanos/toxicidad , Hidrogeles , Peso Molecular , Polisacáridos Bacterianos/aislamiento & purificación , Polisacáridos Bacterianos/toxicidad , Solubilidad , ViscosidadRESUMEN
Levan-type fructooligosaccharides (LFOs) and levan can potentially be used as ingredients in prebiotics, skincare products, and antitumor agents. The Y246S mutant of Bacillus licheniformis RN-01 levansucrase (oligosaccharide-producing levansucrase, OPL) was reported to productively synthesize LFOs; however, OPL's thermostability is low at high temperatures. To enhance OPL structural stability, this study employed molecular dynamics (AMBER) to identify a highly flexible region, as measured by its average root-mean-square fluctuation (RMSF) value, on the OPL surface and computational protein design (Rosetta) to rigidify and increase favorable interactions to increase its structural stability. AMBER identified region nine (residues 277-317) as a highly flexible region that was selected for design because it has the highest number of residues and the second-highest average RMSF, and it is farthest from the active site. Rosetta designed 14 mutants with the best ΔΔG value in each position, where three mutants have better ΔG than OPL. To determine whether their flexibilities and stabilities are lower than those of OPL, all 14 designed mutants were simulated at high temperature (500 K), and we found that K296E, G309S, and A310W mutants were predicted to be more stable and could retain their native structures better than OPL. Our results suggest that enhanced structural stabilities of these mutants are caused by increased hydrogen bond strengths of the designed residues and their neighboring residues. This study designed K296E, G309S, and A310W mutants of OPL with high potential for stability improvement, and they could potentially be used for the effective production of LFOs.
Asunto(s)
Bacillus licheniformis , Hexosiltransferasas , Bacillus licheniformis/genética , Bacillus licheniformis/metabolismo , Estabilidad de Enzimas , Hexosiltransferasas/genética , Hexosiltransferasas/metabolismo , Oligosacáridos , TemperaturaRESUMEN
Alternansucrase (ALT, EC 2.4.1.140) is a glucansucrase that can generate α-(1,3/1,6)-linked glucan from sucrose. Previously, the crystal structure of the first alternansucrase from Leuconostoc citreum NRRL B-1355 was successfully elucidated; it showed that alternansucrase might have two acceptor subsites (W675 and W543) responsible for the formation of alternating linked glucan. This work aimed to investigate the primary acceptor subsite (W675) by saturated mutagenesis using Leuconostoc citreum ABK-1 alternansucrase (LcALT). The substitution of other residues led to loss of overall activity, and formation of an alternan polymer with a nanoglucan was maintained when W675 was replaced with other aromatic residues. Conversely, substitution by nonaromatic residues led to the synthesis of oligosaccharides. Mutations at W675 could potentially cause LcALT to lose control of the acceptor molecule binding via maltose-acceptor reaction-as demonstrated by results from molecular dynamics simulations of the W675A variant. The formation of α-(1,2), α-(1,3), α-(1,4), and α-(1,6) linkages were detected from products of the W675A mutant. In contrast, the wild-type enzyme strictly synthesized α-(1,6) linkage on the maltose acceptor. This study examined the importance of W675 for transglycosylation, processivity, and regioselectivity of glucansucrases. Engineering glucansucrase active sites is one of the essential approaches to green tools for carbohydrate modification.
Asunto(s)
Glicosiltransferasas/química , Glicosiltransferasas/metabolismo , Leuconostoc/enzimología , Ingeniería de Proteínas , Activación Enzimática , Glicosilación , Glicosiltransferasas/genética , Hidrólisis , Cinética , Leuconostoc/genética , Modelos Moleculares , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad , Especificidad por SustratoRESUMEN
Chitosan oligosaccharide (COS), a natural polymer derived from chitosan, exerts several biological activities including anti-inflammation, anti-tumor, anti-metabolic syndrome, and drug delivery enhancer. Since COS is vastly distributed to kidney and eliminated in urine, it may have a potential advantage as the therapeutics of kidney diseases. Polycystic kidney disease (PKD) is a common genetic disorder characterized by multiple fluid-filled cysts, replacing normal renal parenchyma and leading to impaired renal function and end-stage renal disease (ESRD). The effective treatment for PKD still needs to be further elucidated. Interestingly, AMP-activated protein kinase (AMPK) has been proposed as a drug target for PKD. This study aimed to investigate the effect of COS on renal cyst enlargement and its underlying mechanisms. We found that COS at the concentrations of 50 and 100 µg/mL decreased renal cyst growth without cytotoxicity, as measured by MTT assay. Immunoblotting analysis showed that COS at 100 µg/mL activated AMPK, and this effect was abolished by STO-609, a calcium/calmodulin-dependent protein kinase kinase beta (CaMKKß) inhibitor. Moreover, COS elevated the level of intracellular calcium. These results suggest that COS inhibits cyst progression by activation of AMPK via CaMKKß. Therefore, COS may hold the potential for pharmaceutical application in PKD.
Asunto(s)
Quitosano/química , Células Epiteliales/efectos de los fármacos , Riñón/efectos de los fármacos , Oligosacáridos/farmacología , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Animales , Bencimidazoles/farmacología , Proliferación Celular , Perros , Células de Riñón Canino Madin Darby , Naftalimidas/farmacología , Fosforilación , Enfermedades Renales Poliquísticas/patología , Transducción de SeñalRESUMEN
Inulosucrase is an enzyme that synthesizes inulin-type ß-2,1-linked fructooligosaccharides (IFOS) from sucrose. Previous studies have shown that calcium is important for the activity and stability of Lactobacillus reuteri 121 inulosucrase (LrInu). Here, mutational analyses of four conserved calcium-binding site I (Ca-I) residues of LrInu, Asp418, Gln449, Asn488, and Asp520 were performed. Alanine substitution for these residues not only reduced the stability and activity of LrInu, but also modulated the pattern of the IFOS produced. Circular dichroism spectroscopy and molecular dynamics simulation indicated that these mutations had limited impact on the overall conformation of the enzyme. One of Ca-I residues most critical for controlling LrInu-mediated polymerization of IFOS, Asp418, was also subjected to mutagenesis, generating D418E, D418H, D418L, D418N, D418S, and D418W. The activity of these mutants demonstrated that the IFOS chain length could be controlled by a single mutation at the Ca-I site.
RESUMEN
Tight junctions play an important role in maintaining barrier integrity of intestinal epithelia. Activation of AMP-activated protein kinase (AMPK) promotes tight junction assembly in intestinal epithelial cells (IEC). Fructo-oligosaccharides (FOS), well-known prebiotics, have previously been shown to alleviate inflammation-associated intestinal epithelial disruption although the mechanisms were unclear. This study aimed to investigate any effect of FOS on AMPK activity and tight junction assembly under non-inflammatory and inflammatory conditions using T84 cells as an IEC model. As analyzed by western blot, FOS induced AMPK activation through a calcium sensing receptor (CaSR)-phospholipase C (PLC)- Ca2+/calmodulin-dependent protein kinase kinase-ß (CaMKKß) pathway. Calcium switch assays and immunofluorescence staining of zonula occludens-1 (ZO-1) revealed that FOS induced tight junction assembly via an CaMKKß-AMPK-dependent mechanism in IEC. Interestingly, FOS reversed the suppressive effect of lipopolysaccharide (LPS) on AMPK activity and tight junction assembly via a CaMKKß pathway. Taken together, these findings uncover a prebiotic-independent effect of FOS in promoting intestinal epithelial tight junction assembly through AMPK activation, which may have implications for the treatment of diseases whose pathogenesis involves impaired intestinal barrier function.
Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Mucosa Intestinal/efectos de los fármacos , Oligosacáridos/farmacología , Prebióticos , Uniones Estrechas/efectos de los fármacos , Señalización del Calcio , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Línea Celular , Claudina-1/metabolismo , Humanos , Mucosa Intestinal/enzimología , Lipopolisacáridos/farmacología , Ocludina/metabolismo , Fosforilación , Receptores Sensibles al Calcio/metabolismo , Uniones Estrechas/enzimología , Fosfolipasas de Tipo C/metabolismo , Proteína de la Zonula Occludens-1/metabolismoRESUMEN
Levansucrase catalyzes production of levan and levan-type fructooligosaccharides (LFOs) with potential applications in food and pharmaceutical industries such as prebiotics and anti-tumor agents. Previous study found that Y246S mutant of Bacillus licheniformis RN-01 levansucrase (oligosaccharide producing levansucrase, OPL) could effectively produce LFOs but its thermostability is limited at high temperature. In this study, molecular dynamics (MD) and computational protein design were used to create mutants with higher thermostability than OPL by rigidifying highly flexible residues on enzyme surface. MD results show that highly flexible residues suitable for design are K82, N83, D179, and Q308. Two approaches were employed to improve their interactions by allowing them to be amino acids that could potentially form favorable interactions with their neighboring residues or natural amino acids except G, P and C. Flexibilities of designed residues of K82H, N83R, Q308S and K82H/N83R mutants are lower than those of OPL. Experimental results show that characteristics and product patterns of designed mutants are relatively similar to those of OPL. K82H/N83R mutant has higher thermostability than OPL with 1.7-fold increase in t1/2. Circular dichroism result suggests that designed mutations do not drastically affect secondary structures. This study shows how computational technique can engineer enzyme for thermostability improvement.