Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuron ; 111(23): 3802-3818.e5, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37776852

RESUMEN

Various specialized structural/functional properties are considered essential for contextual memory encoding by hippocampal mossy fiber (MF) synapses. Although investigated to exquisite detail in model organisms, synapses, including MFs, have undergone minimal functional interrogation in humans. To determine the translational relevance of rodent findings, we evaluated MF properties within human tissue resected to treat epilepsy. Human MFs exhibit remarkably similar hallmark features to rodents, including AMPA receptor-dominated synapses with small contributions from NMDA and kainate receptors, large dynamic range with strong frequency facilitation, NMDA receptor-independent presynaptic long-term potentiation, and strong cyclic AMP (cAMP) sensitivity of release. Array tomography confirmed the evolutionary conservation of MF ultrastructure. The astonishing congruence of rodent and human MF core features argues that the basic MF properties delineated in animal models remain critical to human MF function. Finally, a selective deficit in GABAergic inhibitory tone onto human MF postsynaptic targets suggests that unrestrained detonator excitatory drive contributes to epileptic circuit hyperexcitability.


Asunto(s)
Fibras Musgosas del Hipocampo , Sinapsis , Animales , Humanos , Fibras Musgosas del Hipocampo/fisiología , Sinapsis/fisiología , Potenciación a Largo Plazo/fisiología , Transducción de Señal
2.
Nat Nanotechnol ; 18(10): 1241-1251, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430038

RESUMEN

Crossing the blood-brain barrier in primates is a major obstacle for gene delivery to the brain. Adeno-associated viruses (AAVs) promise robust, non-invasive gene delivery from the bloodstream to the brain. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates. Here we report on AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques, which has improved delivery efficiency in the brains of multiple non-human primate species: marmoset, rhesus macaque and green monkey. CAP-Mac is neuron biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques and is vasculature biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver functional GCaMP for ex vivo calcium imaging across multiple brain areas, or a cocktail of fluorescent reporters for Brainbow-like labelling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. As such, CAP-Mac is shown to have potential for non-invasive systemic gene transfer in the brains of non-human primates.


Asunto(s)
Encéfalo , Callithrix , Humanos , Animales , Recién Nacido , Chlorocebus aethiops , Macaca mulatta/genética , Callithrix/genética , Encéfalo/fisiología , Técnicas de Transferencia de Gen , Neuronas , Vectores Genéticos/genética
3.
Transgenic Res ; 32(3): 209-221, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37133648

RESUMEN

Maintenance of calcium homeostasis is important for proper endoplasmic reticulum (ER) function. When cellular stress conditions deplete the high concentration of calcium in the ER, ER-resident proteins are secreted into the extracellular space in a process called exodosis. Monitoring exodosis provides insight into changes in ER homeostasis and proteostasis resulting from cellular stress associated with ER calcium dysregulation. To monitor cell-type specific exodosis in the intact animal, we created a transgenic mouse line with a Gaussia luciferase (GLuc)-based, secreted ER calcium-modulated protein, SERCaMP, preceded by a LoxP-STOP-LoxP (LSL) sequence. The Cre-dependent LSL-SERCaMP mice were crossed with albumin (Alb)-Cre and dopamine transporter (DAT)-Cre mouse lines. GLuc-SERCaMP expression was characterized in mouse organs and extracellular fluids, and the secretion of GLuc-SERCaMP in response to cellular stress was monitored following pharmacological depletion of ER calcium. In LSL-SERCaMP × Alb-Cre mice, robust GLuc activity was observed only in the liver and blood, whereas in LSL-SERCaMP × DAT-Cre mice, GLuc activity was seen in midbrain dopaminergic neurons and tissue samples innervated by dopaminergic projections. After calcium depletion, we saw increased GLuc signal in the plasma and cerebrospinal fluid collected from the Alb-Cre and DAT-Cre crosses, respectively. This mouse model can be used to investigate the secretion of ER-resident proteins from specific cell and tissue types during disease pathogenesis and may aid in the identification of therapeutics and biomarkers of disease.


Asunto(s)
Calcio , Proteostasis , Ratones , Animales , Proteostasis/genética , Calcio/metabolismo , Hígado/metabolismo , Luciferasas/metabolismo , Retículo Endoplásmico/genética , Ratones Transgénicos
4.
Res Sq ; 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36789432

RESUMEN

Adeno-associated viruses (AAVs) promise robust gene delivery to the brain through non-invasive, intravenous delivery. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates (NHPs). Here we describe AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques with improved efficiency in the brain of multiple NHP species: marmoset, rhesus macaque, and green monkey. CAP-Mac is neuron-biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques, and is vasculature-biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver (1) functional GCaMP for ex vivo calcium imaging across multiple brain areas, and (2) a cocktail of fluorescent reporters for Brainbow-like labeling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. Given its capabilities for systemic gene transfer in NHPs, CAP-Mac promises to help unlock non-invasive access to the brain.

5.
Nat Neurosci ; 25(1): 106-115, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34887588

RESUMEN

Genetic intervention is increasingly being explored as a therapeutic option for debilitating disorders of the central nervous system. The safety and efficacy of gene therapies rely upon expressing a transgene in affected cells while minimizing off-target expression. Here we show organ-specific targeting of adeno-associated virus (AAV) capsids after intravenous delivery, which we achieved by employing a Cre-transgenic-based screening platform and sequential engineering of AAV-PHP.eB between the surface-exposed AA452 and AA460 of VP3. From this selection, we identified capsid variants that were enriched in the brain and targeted away from the liver in C57BL/6J mice. This tropism extends to marmoset (Callithrix jacchus), enabling robust, non-invasive gene delivery to the marmoset brain after intravenous administration. Notably, the capsids identified result in distinct transgene expression profiles within the brain, with one exhibiting high specificity to neurons. The ability to cross the blood-brain barrier with neuronal specificity in rodents and non-human primates enables new avenues for basic research and therapeutic possibilities unattainable with naturally occurring serotypes.


Asunto(s)
Cápside , Dependovirus , Administración Intravenosa , Animales , Encéfalo/metabolismo , Callithrix/genética , Dependovirus/genética , Vectores Genéticos , Hígado , Ratones , Ratones Endogámicos C57BL , Transducción Genética , Transgenes
6.
eNeuro ; 8(4)2021.
Artículo en Inglés | MEDLINE | ID: mdl-34083381

RESUMEN

The orbitofrontal cortex (OFC) is a brain region involved in higher-order decision-making. Rodent studies show that cocaine self-administration (CSA) reduces OFC contribution to goal-directed behavior and behavioral strategies to avoid drug intake. This change in OFC function persists for many weeks after cocaine withdrawal, suggesting involvement in the process of addiction. The mechanisms underlying impaired OFC function by cocaine are not well-understood. However, studies implicate altered OFC serotonin (5-HT) function in disrupted cognitive processes during addiction and other psychiatric disorders. Thus, it is hypothesized that cocaine impairment of OFC function involves changes in 5-HT signaling, and previous work shows that 5-HT1A and 5-HT2A receptor-mediated effects on OFC pyramidal neurons (PyNs) are impaired weeks after cocaine withdrawal. However, 5-HT effects on other contributors to OFC circuit function have not been fully investigated, including the parvalbumin-containing, fast-spiking interneurons (OFCPV), whose function is essential to normal OFC-mediated behavior. Here, 5-HT function in naive rats and those withdrawn from CSA were evaluated using a novel rat transgenic line in which the rat parvalbumin promoter drives Cre-recombinase expression to permit identification of OFCPV cells by fluorescent reporter protein expression. We find that whereas CSA altered basal synaptic and membrane properties of the OFCPV neurons in a sex-dependent manner, the effects of 5-HT on these cells were unchanged by CSA. These data suggest that the behavioral effects of dysregulated OFC 5-HT function caused by cocaine experience are primarily mediated by changes in 5-HT signaling at PyNs, and not at OFCPV neurons.


Asunto(s)
Cocaína , Animales , Integrasas , Neuronas , Parvalbúminas , Corteza Prefrontal , Ratas , Serotonina
7.
J Neurosci ; 40(44): 8463-8477, 2020 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33051346

RESUMEN

Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced drug seeking in rodent models correlates with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses in the nucleus accumbens core (NAcore). Matrix metalloproteinases (MMPs) are inducible endopeptidases that degrade extracellular matrix (ECM) proteins, and reveal tripeptide Arginine-Glycine-Aspartate (RGD) domains that bind and signal through integrins. Integrins are heterodimeric receptors composed of αß subunits, and a primary signaling kinase is focal adhesion kinase (FAK). We previously showed that MMP activation is necessary for and potentiates cued reinstatement of cocaine seeking, and MMP-induced catalysis stimulates ß3-integrins to induce t-SP. Here, we determined whether ß3-integrin signaling through FAK and cofilin (actin depolymerization factor) is necessary to promote synaptic growth during t-SP. Using a small molecule inhibitor to prevent FAK activation, we blocked cued-induced cocaine reinstatement and increased spine head diameter (dh). Immunohistochemistry on NAcore labeled spines with ChR2-EYFP virus, showed increased immunoreactivity of phosphorylation of FAK (p-FAK) and p-cofilin in dendrites of reinstated animals compared with extinguished and yoked saline, and the p-FAK and cofilin depended on ß3-integrin signaling. Next, male and female transgenic rats were used to selectively label D1 or D2 neurons with ChR2-mCherry. We found that p-FAK was increased during drug seeking in both D1 and D2-medium spiny neurons (MSNs), but increased p-cofilin was observed only in D1-MSNs. These data indicate that ß3-integrin, FAK and cofilin constitute a signaling pathway downstream of MMP activation that is involved in promoting the transient synaptic enlargement in D1-MSNs induced during reinstated cocaine by drug-paired cues.SIGNIFICANCE STATEMENT Drug-associated cues precipitate relapse, which is correlated with transient synaptic enlargement in the accumbens core. We showed that cocaine cue-induced synaptic enlargement depends on matrix metalloprotease signaling in the extracellular matrix (ECM) through ß3-integrin to activate focal adhesion kinase (FAK) and phosphorylate the actin binding protein cofilin. The nucleus accumbens core (NAcore) contains two predominate neuronal subtypes selectively expressing either D1-dopamine or D2-dopamine receptors. We used transgenic rats to study each cell type and found that cue-induced signaling through cofilin phosphorylation occurred only in D1-expressing neurons. Thus, cocaine-paired cues initiate cocaine reinstatement and synaptic enlargement through a signaling cascade selectively in D1-expressing neurons requiring ECM stimulation of ß3-integrin-mediated phosphorylation of FAK (p-FAK) and cofilin.


Asunto(s)
Factores Despolimerizantes de la Actina/metabolismo , Trastornos Relacionados con Cocaína/fisiopatología , Neuronas Dopaminérgicas/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Integrina beta3/metabolismo , Receptores de Dopamina D1/metabolismo , Animales , Trastornos Relacionados con Cocaína/psicología , Señales (Psicología) , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/ultraestructura , Comportamiento de Búsqueda de Drogas , Activación Enzimática , Humanos , Masculino , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Ratas Transgénicas , Recurrencia , Sinapsis
8.
J Neuroinflammation ; 16(1): 276, 2019 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-31883529

RESUMEN

BACKGROUND: Lysosomal storage diseases (LSD) are a large family of inherited disorders characterized by abnormal endolysosomal accumulation of cellular material due to catabolic enzyme and transporter deficiencies. Depending on the affected metabolic pathway, LSD manifest with somatic or central nervous system (CNS) signs and symptoms. Neuroinflammation is a hallmark feature of LSD with CNS involvement such as mucolipidosis type IV, but not of others like Fabry disease. METHODS: We investigated the properties of microglia from LSD with and without major CNS involvement in 2-month-old mucolipidosis type IV (Mcoln1-/-) and Fabry disease (Glay/-) mice, respectively, by using a combination of flow cytometric, RNA sequencing, biochemical, in vitro and immunofluorescence analyses. RESULTS: We characterized microglia activation and transcriptome from mucolipidosis type IV and Fabry disease mice to determine if impaired lysosomal function is sufficient to prime these brain-resident immune cells. Consistent with the neurological pathology observed in mucolipidosis type IV, Mcoln1-/- microglia demonstrated an activation profile with a mixed neuroprotective/neurotoxic expression pattern similar to the one we previously observed in Niemann-Pick disease, type C1, another LSD with significant CNS involvement. In contrast, the Fabry disease microglia transcriptome revealed minimal alterations, consistent with the relative lack of CNS symptoms in this disease. The changes observed in Mcoln1-/- microglia showed significant overlap with alterations previously reported for other common neuroinflammatory disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Indeed, our comparison of microglia transcriptomes from Alzheimer's disease, amyotrophic lateral sclerosis, Niemann-Pick disease, type C1 and mucolipidosis type IV mouse models showed an enrichment in "disease-associated microglia" pattern among these diseases. CONCLUSIONS: The similarities in microglial transcriptomes and features of neuroinflammation and microglial activation in rare monogenic disorders where the primary metabolic disturbance is known may provide novel insights into the immunopathogenesis of other more common neuroinflammatory disorders. TRIAL REGISTRATION: ClinicalTrials.gov, NCT01067742, registered on February 12, 2010.


Asunto(s)
Microglía/metabolismo , Mucolipidosis/genética , Mucolipidosis/patología , Transcriptoma , Animales , Enfermedad de Fabry/genética , Enfermedad de Fabry/metabolismo , Enfermedad de Fabry/patología , Humanos , Ratones , Ratones Transgénicos , Microglía/patología , Mucolipidosis/metabolismo
9.
Hum Mol Genet ; 28(15): 2561-2572, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31009948

RESUMEN

Gonadotropin-regulated testicular RNA helicase (GRTH/DDX25) is a testis specific member of the DEAD-box family of RNA helicases expressed in meiotic and haploid germ cells which plays an essential role in spermatogenesis. There are two species of GRTH the 56 kDa non-phospho and 61 kDa phospho forms. Our early studies revealed a missense mutation (R242H) of GRTH in azoospermic men that when expressed in COS1-cells lack the phospho-form of GRTH. To investigate the role of the phospho-GRTH species in spermatogenesis, we generated a GRTH knock-in (KI) transgenic mice with the R242H mutation. GRTH-KI mice are sterile with reduced testis size, lack sperm with spermatogenic arrest at round spermatid stage and loss of the cytoplasmic phospho-GRTH species. Electron microscopy studies revealed reduction in the size of chromatoid bodies (CB) of round spermatids (RS) and germ cell apoptosis. We observed absence of phospho-GRTH in the CB of RS. Complete loss of chromatin remodeling and related proteins such as TP2, PRM2, TSSK6 and marked reduction of their respective mRNAs and half-lives were observed in GRTH-KI mice. We showed that phospho-GRTH has a role in TP2 translation and revealed its occurrence in a 3' UTR dependent manner. These findings demonstrate the relevance of phospho-GRTH in the structure of the chromatoid body, spermatid development and completion of spermatogenesis and provide an avenue for the development of a male contraceptive.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Infertilidad Masculina/genética , Mutación Missense , Procesamiento Proteico-Postraduccional , Espermátides/metabolismo , Animales , Aspermia/genética , Aspermia/metabolismo , Aspermia/fisiopatología , Ensamble y Desensamble de Cromatina , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/fisiología , Regulación de la Expresión Génica , Infertilidad Masculina/metabolismo , Infertilidad Masculina/fisiopatología , Masculino , Ratones , Ratones Noqueados , Fosforilación , Protaminas/genética , Proteínas Serina-Treonina Quinasas/genética , Espermátides/patología , Espermátides/fisiología , Espermatogénesis
10.
Neuron ; 102(1): 105-119.e8, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30792150

RESUMEN

Historically, the rat has been the preferred animal model for behavioral studies. Limitations in genome modification have, however, caused a lag in their use compared to the bevy of available transgenic mice. Here, we have developed several transgenic tools, including viral vectors and transgenic rats, for targeted genome modification in specific adult rat neurons using CRISPR-Cas9 technology. Starting from wild-type rats, knockout of tyrosine hydroxylase was achieved with adeno-associated viral (AAV) vectors expressing Cas9 or guide RNAs (gRNAs). We subsequently created an AAV vector for Cre-dependent gRNA expression as well as three new transgenic rat lines to specifically target CRISPR-Cas9 components to dopaminergic neurons. One rat represents the first knockin rat model made by germline gene targeting in spermatogonial stem cells. The rats described herein serve as a versatile platform for making cell-specific and sequence-specific genome modifications in the adult brain and potentially other Cre-expressing tissues of the rat.


Asunto(s)
Células Madre Germinales Adultas/metabolismo , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Neuronas Dopaminérgicas/metabolismo , Edición Génica/métodos , Marcación de Gen/métodos , Animales , Proteína 9 Asociada a CRISPR/genética , Desoxirribonucleasa I/genética , Dependovirus , Modelos Animales de Enfermedad , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Técnicas de Sustitución del Gen/métodos , Técnicas de Inactivación de Genes , Vectores Genéticos , Integrasas , Proteínas Luminiscentes/genética , Neuronas/metabolismo , Regiones Promotoras Genéticas , ARN Guía de Kinetoplastida , Ratas , Ratas Transgénicas , Tirosina 3-Monooxigenasa/genética , Proteína Fluorescente Roja
11.
J Neurosci ; 39(11): 2041-2051, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30622165

RESUMEN

Outputs from the nucleus accumbens (NAc) include projections to the ventral pallidum and the ventral tegmental area and subtantia nigra in the ventral mesencephalon. The medium spiny neurons (MSN) that give rise to these pathways are GABAergic and consist of two populations of equal number that are segregated by differentially expressed proteins, including D1- and D2-dopamine receptors. Afferents to the ventral pallidum arise from both D1- and D2-MSNs, whereas the ventral mesencephalon is selectively innervated by D1-MSN. To determine the extent of collateralization of D1-MSN to these axon terminal fields we used retrograde labeling in transgenic mice expressing tdTomato selectively in D1-MSN, and found that a large majority of D1-MSN in either the shell or core subcompartments of the accumbens collateralized to both output structures. Approximately 70% of D1-MSNs projecting to the ventral pallidum collateralized to the ventral mesencephalon, whereas >90% of mesencephalic D1-MSN afferents collateralized to the ventral pallidum. In contrast, <10% of dorsal striatal D1-MSNs collateralized to both the globus pallidus and ventral mesencephalon. D1-MSN activation is required for conditioned cues to induce cocaine seeking. To determine which D1-MSN projection mediates cued cocaine seeking, we selectively transfected D1-MSNs in transgenic rats with an inhibitory Gi-coupled DREADD. Activation of the transfected Gi-DREADD with clozapine-N-oxide administered into the ventral pallidum, but not into the ventral mesencephalon, blocked cue-induced cocaine seeking. These data show that, although accumbens D1-MSNs largely collateralize to both the ventral pallidum and ventral mesencephalon, only D1-MSN innervation of the ventral pallidum is necessary for cue-induced cocaine seeking.SIGNIFICANCE STATEMENT Activity in D1 dopamine receptor-expressing neurons in the NAc is required for rodents to respond to cocaine-conditioned cues and relapse to drug seeking behaviors. The D1-expressing neurons project to both the ventral pallidum and ventral mesencephalon, and we found that a majority of the neurons that innervate the ventral pallidum also collateralize to the ventral mesencephalon. However, despite innervating both structures, only D1 innervation of the ventral pallidum mediates cue-induced cocaine seeking.


Asunto(s)
Prosencéfalo Basal/fisiología , Cocaína/administración & dosificación , Comportamiento de Búsqueda de Drogas/fisiología , Neuronas/fisiología , Núcleo Accumbens/fisiología , Receptores de Dopamina D1/fisiología , Animales , Prosencéfalo Basal/citología , Condicionamiento Clásico , Femenino , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Neuronas/citología , Núcleo Accumbens/citología , Ratas Long-Evans , Ratas Transgénicas
12.
Commun Biol ; 1: 114, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30271994

RESUMEN

There is tremendous interest in transplanting neural precursor cells for brain tissue regeneration. However, it remains unclear whether a vascularized and integrated complex neural tissue can be generated within the brain through transplantation of cells. Here, we report that early stage neural precursor cells recapitulate their seminal properties and develop into large brain-like tissue when implanted into the rat brain ventricle. Whereas the implanted cells predominantly differentiated into glutamatergic neurons and astrocytes, the host brain supplied the intact vasculature, oligodendrocytes, GABAergic interneurons, and microglia that seamlessly integrated into the new tissue. Furthermore, local and long-range axonal connections formed mature synapses between the host brain and the graft. Implantation of precursor cells into the CSF-filled cavity also led to a formation of brain-like tissue that integrated into the host cortex. These results may constitute the basis of future brain tissue replacement strategies.

13.
PLoS One ; 13(2): e0193129, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29485996

RESUMEN

Design and engineering of complex knockin mice has revolutionized the in vivo manipulation of genetically defined cells. Recently development of the bacterial clustered regularly interspersed short palindromic repeats (CRISPR) associated protein 9 (Cas9) system for single site cleavage of mammalian genomes has opened the way for rapid generation of knockin mice by targeting homology directed repair to selected cleavage sites. We used this approach to generate new lines of mice that will be useful for a variety of aspects of neuroscience research. These lines have been bred to homozygosity and details of the expression and function of the transgenes are reported. Two lines target the Rosa26-locus and have been engineered to allow Cre-dependent expression of the avian tva receptor, and Cre-dependent expression of a cell surface targeted spaghetti-monster carrying many copies of the "ollas-tag". Another line expresses red fluorescent protein and tva in Tac1-positive neurons; the fourth line targets FlpO expression to Plekhg1 expressing neurons, providing a powerful approach to modify gene expression in thalamic excitatory neurons.


Asunto(s)
Técnicas de Sustitución del Gen , Sitios Genéticos , Neuronas/metabolismo , Oocitos/metabolismo , ARN no Traducido/genética , Animales , Sistemas CRISPR-Cas , Genes Reporteros , Proteínas Luminiscentes , Ratones , Ratones Transgénicos , ARN Guía de Kinetoplastida , Proteína Fluorescente Roja
14.
Curr Biol ; 27(14): 2089-2100.e5, 2017 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-28690111

RESUMEN

Eating is a learned process. Our desires for specific foods arise through experience. Both electrical stimulation and optogenetic studies have shown that increased activity in the lateral hypothalamus (LH) promotes feeding. Current dogma is that these effects reflect a role for LH neurons in the control of the core motivation to feed, and their activity comes under control of forebrain regions to elicit learned food-motivated behaviors. However, these effects could also reflect the storage of associative information about the cues leading to food in LH itself. Here, we present data from several studies that are consistent with a role for LH in learning. In the first experiment, we use a novel GAD-Cre rat to show that optogenetic inhibition of LH γ-aminobutyric acid (GABA) neurons restricted to cue presentation disrupts the rats' ability to learn that a cue predicts food without affecting subsequent food consumption. In the second experiment, we show that this manipulation also disrupts the ability of a cue to promote food seeking after learning. Finally, we show that inhibition of the terminals of the LH GABA neurons in ventral-tegmental area (VTA) facilitates learning about reward-paired cues. These results suggest that the LH GABA neurons are critical for storing and later disseminating information about reward-predictive cues.


Asunto(s)
Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Área Hipotalámica Lateral/fisiología , Aprendizaje/fisiología , Motivación/fisiología , Recompensa , Área Tegmental Ventral/fisiología , Animales , Señales (Psicología) , Femenino , Masculino , Optogenética , Ratas , Ratas Long-Evans
15.
eNeuro ; 3(3)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27257630

RESUMEN

The growth of research on adult neurogenesis and the development of new models and tools have greatly advanced our understanding of the function of newborn neurons in recent years. However, there are still significant limitations in the ability to identify the functions of adult neurogenesis in available models. Here we report a transgenic rat (TK rat) that expresses herpes simplex virus thymidine kinase in GFAP+ cells. Upon treating TK rats with the antiviral drug valganciclovir, granule cell neurogenesis can be completely inhibited in adulthood, in both the hippocampus and olfactory bulb. Interestingly, neurogenesis in the glomerular and external plexiform layers of the olfactory bulb was only partially inhibited, suggesting that some adult-born neurons in these regions derive from a distinct precursor population that does not express GFAP. Within the hippocampus, blockade of neurogenesis was rapid and nearly complete within 1 week of starting treatment. Preliminary behavioral analyses indicate that general anxiety levels and patterns of exploration are generally unaffected in neurogenesis-deficient rats. However, neurogenesis-deficient TK rats showed reduced sucrose preference, suggesting deficits in reward-related behaviors. We expect that TK rats will facilitate structural, physiological, and behavioral studies that complement those possible in existing models, broadly enhancing understanding of the function of adult neurogenesis.


Asunto(s)
Células Madre Adultas/fisiología , Modelos Animales , Neurogénesis/fisiología , Ratas Transgénicas , Células Madre Adultas/patología , Animales , Ansiedad/fisiopatología , Coxa Valga , Sacarosa en la Dieta , Conducta Exploratoria/fisiología , Preferencias Alimentarias/fisiología , Proteína Ácida Fibrilar de la Glía/metabolismo , Hipocampo/crecimiento & desarrollo , Hipocampo/patología , Hipocampo/fisiología , Humanos , Masculino , Bulbo Olfatorio/crecimiento & desarrollo , Bulbo Olfatorio/patología , Bulbo Olfatorio/fisiología , Recompensa , Simplexvirus , Timidina Quinasa/genética , Timidina Quinasa/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo
16.
Stem Cells ; 34(8): 2194-209, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27144663

RESUMEN

The specific actions of insulin-like growth factor-I (IGF-I) and the role of brain-derived IGF-I during hippocampal neurogenesis have not been fully defined. To address the influence of IGF-I on the stages of hippocampal neurogenesis, we studied a postnatal/adult global Igf-I knockout (KO) mice (Igf-I(-/-) ) and a nervous system Igf-I conditional KO (Igf-I(Δ/Δ) ). In both KO mice we found an accumulation of Tbr2(+) -intermediate neuronal progenitors, some of which were displaced in the outer granule cell layer (GCL) and the molecular layer (ML) of the dentate gyrus (DG). Similarly, more ectopic Ki67(+) - cycling cells were detected. Thus, the GCL was disorganized with significant numbers of Prox1(+) -granule neurons outside this layer and altered morphology of radial glial cells (RGCs). Dividing progenitors were also generated in greater numbers in clonal hippocampal stem cell (HPSC) cultures from the KO mice. Indeed, higher levels of Hes5 and Ngn2, transcription factors that maintain the stem and progenitor cell state, were expressed in both HPSCs and the GCL-ML from the Igf-I(Δ/Δ) mice. To determine the impact of Igf-I deletion on neuronal generation in vivo, progenitors in Igf-I(-/-) and Igf-I(+/+) mice were labeled with a GFP-expressing vector. This revealed that in the Igf-I(-/-) mice more GFP(+) -immature neurons were formed and they had less complex dendritic trees. These findings indicate that local IGF-I plays critical roles during postnatal/adult hippocampal neurogenesis, regulating the transition from HPSCs and progenitors to mature granule neurons in a cell stage-dependent manner. Stem Cells 2016;34:2194-2209.


Asunto(s)
Envejecimiento/metabolismo , Diferenciación Celular , Hipocampo/citología , Hipocampo/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Células-Madre Neurales/citología , Neurogénesis , Neuronas/citología , Animales , Animales Recién Nacidos , Recuento de Células , Ciclo Celular/genética , Diferenciación Celular/genética , Proliferación Celular , Forma de la Célula , Células Clonales , Giro Dentado/citología , Proteínas de Dominio Doblecortina , Eliminación de Gen , Perfilación de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Neuronas/metabolismo , Neuropéptidos/metabolismo , Receptor IGF Tipo 1/metabolismo , Proteínas Supresoras de Tumor/metabolismo
17.
Mol Psychiatry ; 21(11): 1517-1526, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26857598

RESUMEN

Overexpression in humans of KCNH2-3.1, which encodes a primate-specific and brain-selective isoform of the human ether-a-go-go-related potassium channel, is associated with impaired cognition, inefficient neural processing and schizophrenia. Here, we describe a new mouse model that incorporates the KCNH2-3.1 molecular phenotype. KCNH2-3.1 transgenic mice are viable and display normal sensorimotor behaviors. However, they show alterations in neuronal structure and microcircuit function in the hippocampus and prefrontal cortex, areas affected in schizophrenia. Specifically, in slice preparations from the CA1 region of the hippocampus, KCNH2-3.1 transgenic mice have fewer mature dendrites and impaired theta burst stimulation long-term potentiation. Abnormal neuronal firing patterns characteristic of the fast deactivation kinetics of the KCNH2-3.1 isoform were also observed in prefrontal cortex. Transgenic mice showed significant deficits in a hippocampal-dependent object location task and a prefrontal cortex-dependent T-maze working memory task. Interestingly, the hippocampal-dependent alterations were not present in juvenile transgenic mice, suggesting a developmental trajectory to the phenotype. Suppressing KCNH2-3.1 expression in adult mice rescues both the behavioral and physiological phenotypes. These data provide insight into the mechanism of association of KCNH2-3.1 with variation in human cognition and neuronal physiology and may explain its role in schizophrenia.


Asunto(s)
Canal de Potasio ERG1/genética , Canal de Potasio ERG1/metabolismo , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Cognición/fisiología , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Hipocampo/fisiopatología , Humanos , Potenciación a Largo Plazo/fisiología , Memoria a Corto Plazo , Ratones , Ratones Transgénicos , Modelos Moleculares , Neuronas/metabolismo , Patología Molecular/métodos , Corteza Prefrontal/fisiopatología , Esquizofrenia/genética , Esquizofrenia/metabolismo
18.
Virology ; 485: 422-30, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26342468

RESUMEN

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) continues to be a threat to human health in the Middle East. Development of countermeasures is ongoing; however, an animal model that faithfully recapitulates human disease has yet to be defined. A recent study indicated that inoculation of common marmosets resulted in inconsistent lethality. Based on these data we sought to compare two isolates of MERS-CoV. We followed disease progression in common marmosets after intratracheal exposure with: MERS-CoV-EMC/2012, MERS-CoV-Jordan-n3/2012, media, or inactivated virus. Our data suggest that common marmosets developed a mild to moderate non-lethal respiratory disease, which was quantifiable by computed tomography (CT), with limited other clinical signs. Based on CT data, clinical data, and virological data, MERS-CoV inoculation of common marmosets results in mild to moderate clinical signs of disease that are likely due to manipulations of the marmoset rather than as a result of robust viral replication.


Asunto(s)
Infecciones por Coronavirus/veterinaria , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Enfermedades de los Monos/mortalidad , Enfermedades de los Monos/virología , Animales , Anticuerpos Antivirales/inmunología , Biopsia , Callithrix , Chlorocebus aethiops , Modelos Animales de Enfermedad , Riñón/patología , Riñón/virología , Pulmón/patología , Pulmón/virología , Enfermedades de los Monos/diagnóstico , Enfermedades de los Monos/inmunología , ARN Viral/genética , Índice de Severidad de la Enfermedad , Tomografía Computarizada por Rayos X , Células Vero
19.
Dev Neurobiol ; 75(8): 823-41, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25447275

RESUMEN

The transcription factor Nurr1 is expressed in the mouse olfactory bulb (OB), although it remains unknown whether it influences the generation of dopaminergic neurons (DA) (DA neurons) in cells isolated from this brain region. We found that expressing Nurr1 in proliferating olfactory bulb stem cells (OBSCs) produces a marked inhibition of cell proliferation and the generation of immature neurons immunoreactive for tyrosine hydroxylase (TH) concomitant with marked upregulations of Th, Dat, Gad, and Fgfr2 transcripts. In long-term cultures, these cells develop neurochemical and synaptic markers of mature-like mesencephalic DA neurons, expressing GIRK2, VMAT2, DAT, calretinin, calbindin, synapsin-I, and SV2. Concurring with the increase in both Th and Gad expression, a subpopulation of induced cells was both TH- and GAD-immunoreactive indicating that they are dopaminergic-GABAergic neurons. Indeed, these cells could mature to express VGAT, suggesting they can uptake and store GABA in vesicles. Remarkably, the dopamine D1 receptor agonist SKF-38393 induced c-Fos in TH(+) cells and dopamine release was detected in these cultures under basal and KCl-evoked conditions. By contrast, cotransducing the Neurogenin2 and Nurr1 transcription factors produced a significant decrease in the number of TH-positive neurons. Our results indicate that Nurr1 overexpression in OBSCs induces the formation of two populations of mature dopaminergic neurons with features of the ventral mesencephalon or of the OB, capable of responding to functional dopaminergic stimuli and of releasing dopamine. They also suggest that the accumulation of Fgfr2 by Nurr1 in OBSCs may be involved in the generation of DA neurons.


Asunto(s)
Neuronas Dopaminérgicas/fisiología , Neuronas GABAérgicas/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Miembro 2 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Bulbo Olfatorio/fisiología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Células Cultivadas , Neuronas Dopaminérgicas/efectos de los fármacos , Factor de Crecimiento Epidérmico/metabolismo , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Ratones Endogámicos C57BL , Mitosis/efectos de los fármacos , Mitosis/fisiología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Bulbo Olfatorio/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo
20.
Dev Neurobiol ; 74(3): 333-50, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24151253

RESUMEN

Local translation of nuclear-encoded mitochondrial mRNAs is essential for mitochondrial activity, yet there is little insight into the role that axonal trafficking of these transcripts play in neuronal function and behavior. Previously, we identified a 38 nucleotide stem-loop structure (zipcode) in the 3' untranslated region of the Cytochrome C oxidase IV (COXIV) mRNA that directs the transport of a reporter mRNA to the axon of superior cervical ganglion neurons (SCG). Overexpression of a chimeric reporter mRNA with the COXIV zipcode competed with the axonal trafficking of endogenous COXIV mRNA, and led to attenuated axon growth in SCG neurons. Here, we show that exogenous expression of the COXIV zipcode in cultured SCG neurons also results in the reduction of local ATP levels and increases levels of reactive oxygen species (ROS) in the axon. We took advantage of this "competition" phenotype to investigate the in vivo significance of axonal transport of COXIV mRNA. Toward this end, we generated transgenic mice expressing a fluorescent reporter fused to COXIV zipcode under a forebrain-specific promoter. Immunohistological analyses and RT-PCR analyses of RNA from the transgenic mouse brain showed expression of the reporter in the deep layer neurons in the pre-frontal and frontal cortex. Consistent with the in vitro studies, we observed increased ROS levels in neurons of these transgenic animals. A battery of behavioral tests on transgenic mice expressing the COXIV zipcode revealed an "anxiety-like" behavioral phenotype, suggesting an important role for axonal trafficking of nuclear-encoded mitochondrial mRNAs in neuronal physiology and animal behavior.


Asunto(s)
Ansiedad/fisiopatología , Transporte Axonal , Axones/metabolismo , Mitocondrias/fisiología , Neuronas/fisiología , ARN Mensajero/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Encéfalo/fisiología , Células Cultivadas , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Conducta Exploratoria/fisiología , Lóbulo Frontal/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mitocondrial , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Estrés Psicológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...