Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Arch Microbiol ; 205(10): 338, 2023 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-37742282

RESUMEN

A polyphasic taxonomic approach, incorporating analysis of phenotypic features, cellular fatty acid profiles, 16S rRNA gene sequences, and determination of average nucleotide identity (ANI) plus digital DNA-DNA hybridization (dDDH), was applied to characterize an anaerobic bacterial strain designated KD22T isolated from human feces. 16S rRNA gene-based phylogenetic analysis showed that strain KD22T was found to be most closely related to species of the genus Gabonibacter. At the 16S rRNA gene level, the closest species from the strain KD22T corresponded with Gabonibacter massiliensis GM7T, with a similarity of 97.58%. Cells of strain KD22T were Gram-negative coccobacillus, positive for indole and negative for catalase, nitrate reduction, oxidase, and urease activities. The fatty acid analysis demonstrated the presence of a high concentration of iso-C15: 0 (51.65%). Next, the complete whole-genome sequence of strain KD22T was 3,368,578 bp long with 42 mol% of DNA G + C contents. The DDH and ANI values between KD22T and type strains of phylogenetically related species were 67.40% and 95.43%, respectively. These phylogenetic, phenotypic, and genomic results supported the affiliation of strain KD22T as a novel bacterial species within the genus Gabonibacter. The proposed name is Gabonibacter chumensis and the type strain is KD22T (= CSUR Q8104T = DSM 115208 T).


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Filogenia , ARN Ribosómico 16S/genética , Inmunoterapia , Ácidos Grasos , Heces
2.
Nat Commun ; 14(1): 662, 2023 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-36750571

RESUMEN

The composition and metabolism of the human gut microbiota are strongly influenced by dietary complex glycans, which cause downstream effects on the physiology and health of hosts. Despite recent advances in our understanding of glycan metabolism by human gut bacteria, we still need methods to link glycans to their consuming bacteria. Here, we use a functional assay to identify and isolate gut bacteria from healthy human volunteers that take up different glycans. The method combines metabolic labeling using fluorescent oligosaccharides with fluorescence-activated cell sorting (FACS), followed by amplicon sequencing or culturomics. Our results demonstrate metabolic labeling in various taxa, such as Prevotella copri, Collinsella aerofaciens and Blautia wexlerae. In vitro validation confirms the ability of most, but not all, labeled species to consume the glycan of interest for growth. In parallel, we show that glycan consumers spanning three major phyla can be isolated from cultures of sorted labeled cells. By linking bacteria to the glycans they consume, this approach increases our basic understanding of glycan metabolism by gut bacteria. Going forward, it could be used to provide insight into the mechanism of prebiotic approaches, where glycans are used to manipulate the gut microbiota composition.


Asunto(s)
Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiología , Citometría de Flujo , Polisacáridos/metabolismo , Prebióticos , Oligosacáridos , Carbohidratos de la Dieta/metabolismo
3.
Cancer Discov ; 12(4): 1070-1087, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35031549

RESUMEN

Several approaches to manipulate the gut microbiome for improving the activity of cancer immune-checkpoint inhibitors (ICI) are currently under evaluation. Here, we show that oral supplementation with the polyphenol-rich berry camu-camu (CC; Myrciaria dubia) in mice shifted gut microbial composition, which translated into antitumor activity and a stronger anti-PD-1 response. We identified castalagin, an ellagitannin, as the active compound in CC. Oral administration of castalagin enriched for bacteria associated with efficient immunotherapeutic responses (Ruminococcaceae and Alistipes) and improved the CD8+/FOXP3+CD4+ ratio within the tumor microenvironment. Moreover, castalagin induced metabolic changes, resulting in an increase in taurine-conjugated bile acids. Oral supplementation of castalagin following fecal microbiota transplantation from ICI-refractory patients into mice supported anti-PD-1 activity. Finally, we found that castalagin binds to Ruminococcus bromii and promoted an anticancer response. Altogether, our results identify castalagin as a polyphenol that acts as a prebiotic to circumvent anti-PD-1 resistance. SIGNIFICANCE: The polyphenol castalagin isolated from a berry has an antitumor effect through direct interactions with commensal bacteria, thus reprogramming the tumor microenvironment. In addition, in preclinical ICI-resistant models, castalagin reestablishes the efficacy of anti-PD-1. Together, these results provide a strong biological rationale to test castalagin as part of a clinical trial. This article is highlighted in the In This Issue feature, p. 873.


Asunto(s)
Microbioma Gastrointestinal , Animales , Bacterias , Trasplante de Microbiota Fecal , Humanos , Ratones , Polifenoles/farmacología , Polifenoles/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA