Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 19(7): e1010669, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37428814

RESUMEN

Pathogenic bacteria, such as Yersinia pseudotuberculosis encounter reactive oxygen species (ROS) as one of the first lines of defense in the mammalian host. In return, the bacteria react by mounting an oxidative stress response. Previous global RNA structure probing studies provided evidence for temperature-modulated RNA structures in the 5'-untranslated region (5'-UTR) of various oxidative stress response transcripts, suggesting that opening of these RNA thermometer (RNAT) structures at host-body temperature relieves translational repression. Here, we systematically analyzed the transcriptional and translational regulation of ROS defense genes by RNA-sequencing, qRT-PCR, translational reporter gene fusions, enzymatic RNA structure probing and toeprinting assays. Transcription of four ROS defense genes was upregulated at 37°C. The trxA gene is transcribed into two mRNA isoforms, of which the most abundant short one contains a functional RNAT. Biochemical assays validated temperature-responsive RNAT-like structures in the 5'-UTRs of sodB, sodC and katA. However, they barely conferred translational repression in Y. pseudotuberculosis at 25°C suggesting partially open structures available to the ribosome in the living cell. Around the translation initiation region of katY we discovered a novel, highly efficient RNAT that was primarily responsible for massive induction of KatY at 37°C. By phenotypic characterization of catalase mutants and through fluorometric real-time measurements of the redox-sensitive roGFP2-Orp1 reporter in these strains, we revealed KatA as the primary H2O2 scavenger. Consistent with the upregulation of katY, we observed an improved protection of Y. pseudotuberculosis at 37°C. Our findings suggest a multilayered regulation of the oxidative stress response in Yersinia and an important role of RNAT-controlled katY expression at host body temperature.


Asunto(s)
Yersinia pseudotuberculosis , Animales , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/metabolismo , Temperatura , Especies Reactivas de Oxígeno/metabolismo , Peróxido de Hidrógeno/farmacología , Peróxido de Hidrógeno/metabolismo , ARN/metabolismo , Estrés Oxidativo/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mamíferos/genética
2.
J Mol Biol ; 434(18): 167667, 2022 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-35667470

RESUMEN

The type III secretion system (T3SS) is indispensable for successful host cell infection by many Gram-negative pathogens. The molecular syringe delivers effector proteins that suppress the host immune response. Synthesis of T3SS components in Yersinia pseudotuberculosis relies on host body temperature, which induces the RNA thermometer (RNAT)-controlled translation of lcrF coding for a virulence master regulator that activates transcription of the T3SS regulon. The assembly of the secretion machinery follows a strict coordinated succession referred to as outside-in assembly, in which the membrane ring complex and the export apparatus represent the nucleation points. Two components essential for the initial assembly are YscJ and YscT. While YscJ connects the membrane ring complex with the export apparatus in the inner membrane, YscT is required for a functional export apparatus. Previous transcriptome-wide RNA structuromics data suggested the presence of unique intercistronic RNATs upstream of yscJ and yscT. Here, we show by reporter gene fusions that both upstream regions confer translational control. Moreover, we demonstrate the temperature-induced opening of the Shine-Dalgarno region, which facilitates ribosome binding, by in vitro structure probing and toeprinting methods. Rationally designed thermostable RNAT variants of the yscJ and yscT thermometers confirmed their physiological relevance with respect to T3SS assembly and host infection. Since we have shown in a recent study that YopN, the gatekeeper of type III secretion, also is under RNAT control, it appears that the synthesis, assembly and functionality of the Yersinia T3S machinery is coordinated by RNA-based temperature sensors at multiple levels.


Asunto(s)
Temperatura Corporal , Interacciones Huésped-Patógeno , ARN Bacteriano , Sistemas de Secreción Tipo III , Infecciones por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Humanos , ARN Bacteriano/química , Transactivadores/genética , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismo , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidad , Infecciones por Yersinia pseudotuberculosis/microbiología
3.
PLoS Pathog ; 17(11): e1009650, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34767606

RESUMEN

Many bacterial pathogens use a type III secretion system (T3SS) as molecular syringe to inject effector proteins into the host cell. In the foodborne pathogen Yersinia pseudotuberculosis, delivery of the secreted effector protein cocktail through the T3SS depends on YopN, a molecular gatekeeper that controls access to the secretion channel from the bacterial cytoplasm. Here, we show that several checkpoints adjust yopN expression to virulence conditions. A dominant cue is the host body temperature. A temperature of 37°C is known to induce the RNA thermometer (RNAT)-dependent synthesis of LcrF, a transcription factor that activates expression of the entire T3SS regulon. Here, we uncovered a second layer of temperature control. We show that another RNAT silences translation of the yopN mRNA at low environmental temperatures. The long and short 5'-untranslated region of both cellular yopN isoforms fold into a similar secondary structure that blocks ribosome binding. The hairpin structure with an internal loop melts at 37°C and thereby permits formation of the translation initiation complex as shown by mutational analysis, in vitro structure probing and toeprinting methods. Importantly, we demonstrate the physiological relevance of the RNAT in the faithful control of type III secretion by using a point-mutated thermostable RNAT variant with a trapped SD sequence. Abrogated YopN production in this strain led to unrestricted effector protein secretion into the medium, bacterial growth arrest and delayed translocation into eukaryotic host cells. Cumulatively, our results show that substrate delivery by the Yersinia T3SS is under hierarchical surveillance of two RNATs.


Asunto(s)
Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , ARN Bacteriano/metabolismo , Sistemas de Secreción Tipo III/metabolismo , Virulencia , Infecciones por Yersinia pseudotuberculosis/microbiología , Yersinia pseudotuberculosis/metabolismo , Proteínas Bacterianas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fagocitosis , Transporte de Proteínas , ARN Bacteriano/genética , Infecciones por Yersinia pseudotuberculosis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...