Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542198

RESUMEN

Glioblastoma multiforme therapy remains a significant challenge since there is a lack of effective treatment for this cancer. As most of the examined gliomas express or overexpress cyclooxygenase-2 (COX-2) and peroxisome proliferator-activated receptors γ (PPARγ), we decided to use these proteins as therapeutic targets. Toxicity, antiproliferative, proapoptotic, and antimigratory activity of COX-2 inhibitor (celecoxib-CXB) and/or PPARγ agonist (Fmoc-L-Leucine-FL) was examined in vitro on temozolomide resistant U-118 MG glioma cell line and comparatively on BJ normal fibroblasts and immortalized HaCaT keratinocytes. The in vivo activity of both agents was studied on C. elegans nematode. Both drugs effectively destroyed U-118 MG glioma cells via antiproliferative, pro-apoptotic, and anti-migratory effects in a concentration range 50-100 µM. The mechanism of action of CXB and FL against glioma was COX-2 and PPARγ dependent and resulted in up-regulation of these factors. Unlike reports by other authors, we did not observe the expected synergistic or additive effect of both drugs. Comparative studies on normal BJ fibroblast cells and immortalized HaCaT keratinocytes showed that the tested drugs did not have a selective effect on glioma cells and their mechanism of action differs significantly from that observed in the case of glioma. HaCaTs did not react with concomitant changes in the expression of COX-2 and PPARγ and were resistant to FL. Safety tests of repurposing drugs used in cancer therapy tested on C. elegans nematode indicated that CXB, FL, or their mixture at a concentration of up to 100 µM had no significant effect on the entire nematode organism up to 4th day of incubation. After a 7-day treatment, CXB significantly shortened the lifespan of C. elegans at 25-400 µM concentration and body length at 50-400 µM concentration.


Asunto(s)
Caenorhabditis elegans , Glioblastoma , Leucina/análogos & derivados , Animales , Humanos , Celecoxib/farmacología , Celecoxib/uso terapéutico , Temozolomida/farmacología , Temozolomida/uso terapéutico , Caenorhabditis elegans/metabolismo , Ciclooxigenasa 2/metabolismo , PPAR gamma/metabolismo , Sulfonamidas/farmacología , Pirazoles/farmacología , Apoptosis , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/uso terapéutico , Línea Celular , Glioblastoma/tratamiento farmacológico , Línea Celular Tumoral
2.
Int J Mol Sci ; 25(3)2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38338809

RESUMEN

The modification of the replicative lifespan (RLS) of fibroblasts is of interest both from a knowledge point of view and for the attenuation of skin aging. The effect of six antioxidants at a concentration of 1 µM on the replicative lifespan of human dermal fibroblasts was studied. The nitroxide 4-hydroxy-TEMPO (TEMPOL), ergothioneine, and Trolox extended the replicative lifespan (RLS) (40 ± 1 population doublings (PD)) by 7 ± 2, 4 ± 1, and 3 ± 1 PD and lowered the expression of p21 at late passages. Coumaric acid, curcumin and resveratrol did not affect the RLS . The level of reactive oxygen species (ROS) was decreased or not affected by the antioxidants although TEMPOL and coumaric acid decreased the level of glutathione. Only ergothioneine and resveratrol decreased the level of protein carbonylation. The antioxidants that could prolong the RLS elevated the mitochondrial membrane potential. Protecting the activity of mitochondria seems to be important for maintaining the replicative capacity of fibroblasts.


Asunto(s)
Antioxidantes , Óxidos N-Cíclicos , Ergotioneína , Marcadores de Spin , Humanos , Antioxidantes/farmacología , Antioxidantes/metabolismo , Ergotioneína/metabolismo , Resveratrol/farmacología , Resveratrol/metabolismo , Ácidos Cumáricos/farmacología , Fibroblastos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo
3.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38069000

RESUMEN

Nitroxides, stable synthetic free radicals, are promising antioxidants, showing many beneficial effects both at the cellular level and in animal studies. However, the cells are usually treated with high millimolar concentrations of nitroxides which are not relevant to the concentrations that could be attained in vivo. This paper aimed to examine the effects of low (≤10 µM) concentrations of three nitroxides, 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO), 4-hydroxy-TEMPO (TEMPOL) and 4-amino-TEMPO (TEMPAMINE), in pure chemical systems and on SH-SY5Y cells transfected with the human tau protein (TAU cells), a model of chronic cellular oxidative stress, and transfected with the empty plasmid (EP cells). All nitroxides were active in antioxidant-activity tests except for the 2,2'-azinobis-(3-ethylbenzthiazolin-6-sulfonate) radical (ABTS•) decolorization assay and reduced Fe3+, inhibited autoxidation of adrenalin and pyrogallol and oxidation of dihydrorhodamine123 by 3-morpholino-sydnonimine SIN-1. TEMPO protected against fluorescein bleaching from hypochlorite, but TEMPAMINE enhanced the bleaching. Nitroxides showed no cytotoxicity and were reduced by the cells to non-paramagnetic derivatives. They decreased the level of reactive oxygen species, depleted glutathione, and increased mitochondrial-membrane potential in both types of cells, and increased lipid peroxidation in TAU cells. These results demonstrate that even at low micromolar concentrations nitroxides can affect the cellular redox equilibrium and other biochemical parameters.


Asunto(s)
Neuroblastoma , Proteínas tau , Animales , Humanos , Proteínas tau/genética , Óxidos de Nitrógeno/farmacología , Antioxidantes/farmacología , Óxidos N-Cíclicos/farmacología
4.
Molecules ; 28(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37764288

RESUMEN

Garlic is known to be rich in antioxidants, inhibit the proliferation of various cancer cells, and hamper cancer formation and growth, but various forms of garlic can differ greatly in these respects. This study aimed to compare the antioxidant properties of acetone, ethanol, and aqueous extracts of fresh Polish and Spanish garlic, black and granulated garlic, as well as fresh and dried ramsons. Extracts of black and granulated garlic showed the lowest total antioxidant capacity (TAC). The content of phenolic compounds correlated with TAC measured by ABTS• decolorization and FRAP methods, and with the results of FRAP and DPPH• decolorization assays. Garlic extracts inhibited the proliferation of PEO1 and SKOV3 ovarian cancer cells and, usually to a smaller extent, MRC-5 fibroblasts. PBS extracts of fresh Spanish garlic showed the highest potency for inhibition of proliferation of PEO1 cells (IC50 of 0.71 µg extract dry mass/100 µL medium). No significant correlation was found between the potency for inhibition of proliferation and the content of phenolics or flavonoids, confirming that phenolics are the main determinants of TAC but do not contribute significantly to the antiproliferative effects of garlic.

5.
Acta Biochim Pol ; 70(2): 457-464, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37262416

RESUMEN

Treatment of human neuroblastoma SH-SY5Y cells with a catecholaminergic neurotoxin, 6-hydroxydopamine (6-OHDA) is an acknowledged in vitro experimental model of Parkinson disease (PD). A decrease in the glutathione content occurs in PD. Higher concentrations of 6-OHDA lowered the glutathione level in SH-SY5Y cells, nonetheless, we and other authors found a considerable increase in these cells' glutathione content after 24 h treatment with 60 µM 6-OHDA. A synthetic antioxidant, 4-aminotetramethylpiperidine-1-oxyl (4-AT) exerted a similar effect. The aim of the present study was to explain this surprising effect by monitoring the time course of changes in the levels of reduced (GSH) and oxidized glutathione (GSSG), total antioxidant activity (TAC) of human neuroblastoma cell SH-SY5Y extracts as well as the level of reactive oxygen species and activities of enzymes of glutathione metabolism after treatment of the cells with 60 µM 6-OHDA and/or 4-AT for 30 min - 24 h. A transient decrease in the level of GSH and TAC of cell extracts, increase in the level of GSSG, and decrease in the activities of glutathione peroxidase, glutathione reductase, glutathione S-transferase and γ-glutamyl-cysteine ligase activities were found followed by normalization or overshoot of the GSH level, TAC and enzyme activities. Increased activity of γ-glutamyl-cysteine ligase activity starting after 4-6 h was responsible for the elevation of the level of GSH and TAC in cells treated with 6-OHDA, 4-AT, and both compounds. The 6-OHDA-induced increase in the GSH content is a result of an overcompensatory response. The antioxidant 4-AT may be useful for the induction of an increase in the level of GSH in neural cells, without the negative effect of 6-OHDA.


Asunto(s)
Antioxidantes , Neuroblastoma , Humanos , Oxidopamina/farmacología , Antioxidantes/farmacología , Disulfuro de Glutatión , Cisteína , Línea Celular Tumoral , Glutatión/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Ligasas
6.
Foods ; 11(16)2022 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-36010518

RESUMEN

There is recent interest in a diet that can be recommended for patients suffering from cancer. In this respect, the effects were studied of the extracts of several common fruits, herbs and vegetables on the viability of two human ovary cancer cell lines (SKOV-3 and PEO1) in vitro. Normal human MRC-5 fibroblasts were used as a control cell line. The extracts of garlic, horseradish and curly kale as well as green and black tea were the most effective in lowering the viability of ovarian cancer cells, while not affecting the viability of MRC-5 fibroblasts. Except for garlic and horseradish, the cytotoxic effects of the extracts correlated with their polyphenol content. The examination of changes in the content of ATP and glutathione, in the level of reactive oxygen species, mitochondrial potential and mitochondrial mass did not show a consistent pattern, suggesting that various extracts may act via different mechanisms. Although the extracts' toxicity to cells in vitro is a first and direct suggestion concerning their possible anticancer effects in vivo, these results point to potential vegetable candidates to become diet components recommended for ovary cancer patients.

7.
Int J Mol Sci ; 24(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36613801

RESUMEN

Abnormally phosphorylated tau protein is the principal component of neurofibrillary tangles, accumulating in the brain in many neurodegenerative diseases, including Alzheimer's disease. The aim of this study was to examine whether overexpression of tau protein leads to changes in the redox status of human neuroblastoma SH-SY5Y cells. The level of reactive oxygen species (ROS) was elevated in tau-overexpressing cells (TAU cells) as compared with cells transfected with the empty vector (EP cells). The level of glutathione was increased in TAU cells, apparently due to overproduction as an adaptation to oxidative stress. The TAU cells had elevated mitochondrial mass. They were more sensitive to 6-hydroxydopamine, delphinidin, 4-amino-TEMPO, and nitroxide-containing nanoparticles (NPs) compared to EP controls. These results indicate that overexpression of the tau protein imposes oxidative stress on the cells. The nitroxide 4-amino-TEMPO and nitroxide-containing nanoparticles (NPs) mitigated oxidative stress in TAU cells, decreasing the level of ROS. Nitroxide-containing nanoparticles lowered the level of lipid peroxidation in both TAU and EP cells, suggesting that nitroxides and NPs may mitigate tau-protein-induced oxidative stress.


Asunto(s)
Nanopartículas , Neuroblastoma , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Neuroblastoma/metabolismo , Estrés Oxidativo , Oxidación-Reducción , Línea Celular Tumoral
8.
Toxicol In Vitro ; 78: 105272, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34740775

RESUMEN

It has been argued that the mol/cell metric is more universal than concentration of the toxic agent since in many cases the effect of dose expressed as mol/cell is independent of ex-perimental setup. We confirmed it for hemolysis of erythrocytes in phosphate-buffered saline induced by hypochlorite where the amount of femtomoles/cell of hypochlorite needed for 50% hemolysis was independent of erythrocyte concentration. However, in the presence of blood plasma this metric became dependent on cell concentration. Similarly, the effect of 3-bromopyruvic acid (3-BP) on PEO1 cells as a function of mol/cell ratio depended on the volume of the 3-BP containing medium, due to the reaction of 3-BP with components of the medium. Hemolytic amounts of sodium dodecyl sulfate and Triton X-100 expressed as mol/cell decreased with increasing cell concentration while the effect of DMSO on the viability of a constant number of fibroblasts was independent of the volume of DMSO-containing medium. These results demonstrate that the mol/cell metric is still dependent on experimental conditions when the toxic agent interacts with components of the medium or when its physical state is modified by the target cells, and the effect is independent of the mol/per cell ratio for high excess of a cell damaging agent.


Asunto(s)
Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Dimetilsulfóxido/administración & dosificación , Dimetilsulfóxido/toxicidad , Hemólisis/efectos de los fármacos , Humanos , Ácido Hipocloroso/administración & dosificación , Ácido Hipocloroso/toxicidad , Octoxinol/administración & dosificación , Octoxinol/toxicidad , Piruvatos/administración & dosificación , Piruvatos/toxicidad , Dodecil Sulfato de Sodio/administración & dosificación , Dodecil Sulfato de Sodio/toxicidad
9.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445795

RESUMEN

3-Bromopyruvic acid (3-BP) is a promising anticancer compound. Two ovary cancer (OC) cell lines, PEO1 and SKOV3, showed relatively high sensitivity to 3-BP (half maximal inhibitory concentration (IC50) of 18.7 and 40.5 µM, respectively). However, the further sensitization of OC cells to 3-BP would be desirable. Delphinidin (D) has been reported to be cytotoxic for cancer cell lines. We found that D was the most toxic for PEO1 and SKOV3 cells from among several flavonoids tested. The combined action of 3-BP and D was mostly synergistic in PEO1 cells and mostly weakly antagonistic in SKOV3 cells. The viability of MRC-5 fibroblasts was not affected by both compounds at concentrations of up to 100 µM. The combined action of 3-BP and D decreased the level of ATP and of dihydroethidium (DHE)-detectable reactive oxygen species (ROS), cellular mobility and cell staining with phalloidin and Mitotracker Red in both cell lines but increased the 2',7'-dichlorofluorescein (DCFDA)-detectable ROS level and decreased the mitochondrial membrane potential and mitochondrial mass only in PEO1 cells. The glutathione level was increased by 3-BP+D only in SKOV3 cells. These differences may contribute to the lower sensitivity of SKOV3 cells to 3-BP+D. Our results point to the possibility of sensitization of at least some OC cells to 3-BP by D.


Asunto(s)
Antocianinas/farmacología , Antineoplásicos/farmacología , Neoplasias Ováricas/tratamiento farmacológico , Piruvatos/farmacología , Adenosina Trifosfato/metabolismo , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Etidio/análogos & derivados , Etidio/farmacología , Femenino , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Flavonoides/farmacología , Glutatión/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias Ováricas/metabolismo , Especies Reactivas de Oxígeno/metabolismo
10.
Oxid Med Cell Longev ; 2020: 9260748, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32377313

RESUMEN

Parkinson's disease (PD) patients can benefit from antioxidant supplementation, and new efficient antioxidants are needed. The aim of this study was to evaluate the protective effect of selected nitroxide-containing redox nanoparticles (NRNPs) in a cellular model of PD. Antioxidant properties of NRNPs were studied in cell-free systems by protection of dihydrorhodamine 123 against oxidation by 3-morpholino-sydnonimine and protection of fluorescein against bleaching by 2,2-azobis(2-amidinopropane) hydrochloride and sodium hypochlorite. Model blood-brain barrier penetration was studied using hCMEC/D3 cells. Human neuroblastoma SH-SY5Y cells, exposed to 6-hydroxydopamine (6-OHDA), were used as an in vitro model of PD. Cells were preexposed to NRNPs or free nitroxides (TEMPO or 4-amino-TEMPO) for 2 h and treated with 6-OHDA for 1 h and 24 h. The reactive oxygen species (ROS) level was estimated with dihydroethidine 123 and Fluorimetric Mitochondrial Superoxide Activity Assay Kit. Glutathione level (GSH) was measured with ortho-phtalaldehyde, ATP by luminometry, changes in mitochondrial membrane potential with JC-1, and mitochondrial mass with 10-Nonyl-Acridine Orange. NRNP1, TEMPO, and 4-amino-TEMPO (25-150 µM) protected SH-SY5Y cells from 6-OHDA-induced viability loss; the protection was much higher for NRNP1 than for free nitroxides. NRNP1 were better antioxidants in vitro and permeated better the model BBB than free nitroxides. Exposure to 6-OHDA decreased the GSH level after 1 h and increased it considerably after 24 h (apparently a compensatory overresponse); NRNPs and free nitroxides prevented this increase. NRNP1 and free nitroxides prevented the decrease in ATP level after 1 h and increased it after 24 h. 6-OHDA increased the intracellular ROS level and mitochondrial superoxide level. Studied antioxidants mostly decreased ROS and superoxide levels. 6-OHDA decreased the mitochondrial potential and mitochondrial mass; both effects were prevented by NRNP1 and nitroxides. These results suggest that the mitochondria are the main site of 6-OHDA-induced cellular damage and demonstrate a protective effect of NRNP1 in a cellular model of PD.


Asunto(s)
Nanopartículas/metabolismo , Neuroblastoma/tratamiento farmacológico , Oxidopamina/uso terapéutico , Línea Celular Tumoral , Humanos , Oxidación-Reducción , Oxidopamina/farmacología , Transducción de Señal
11.
Anal Biochem ; 597: 113698, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32222539

RESUMEN

Nitroxides and nitroxide-containing nanoparticles (RNP) are excellent antioxidants. However, they have relatively high reduction potentials, which make them behave like oxidants or show little activity in some antioxidant assays. We found that stable nitroxyl radicals (TEMPO and 4-amino-TEMPO) has low reactivity in the test of scavenging of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radical (ABTS•). As a result, supplementation of blood plasma with nitroxides may decrease its total antioxidant capacity assayed with ABTS•. Nitroxides oxidize Fe2+ and in this way interfere with the ferric-Xylenol Orange assay of peroxides. Nitroxides as well as RNP directly oxidize glutathione and fluorogenic probes used for estimation of reactive oxygen species (ROS) (dihydro-2'7'-dichlorofluorescein diacetate, dihydroethidine and dihydrorhodamine 123) and thus produce artefacts in assays of glutathione and ROS in cell-free and cellular systems. These results point to the necessity of careful interpretation of antioxidant assays concerning nitroxides and RNP or performed in their presence.


Asunto(s)
Antioxidantes/farmacología , Benzotiazoles/antagonistas & inhibidores , Óxidos N-Cíclicos/farmacología , Nanopartículas/química , Óxidos de Nitrógeno/farmacología , Ácidos Sulfónicos/antagonistas & inhibidores , Adulto , Antioxidantes/química , Células Cultivadas , Óxidos N-Cíclicos/sangre , Óxidos N-Cíclicos/química , Femenino , Humanos , Estructura Molecular , Óxidos de Nitrógeno/sangre , Óxidos de Nitrógeno/química
12.
Aging (Albany NY) ; 12(2): 1910-1927, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31962290

RESUMEN

The study was aimed at evaluation of the role of secondary oxidative stress in the stress-induced premature senescence (SIPS) of human fibroblasts induced by H2O2. Two fibroblast lines were used: lung MRC-5 and ear H8F2p25LM fibroblasts. The lines differed considerably in sensitivity to H2O2 (IC50 of 528 and 33.5 µM, respectively). The cells were exposed to H2O2 concentrations corresponding to IC50 and after 24 h supplemented with a range of antioxidants. Most of antioxidants studied slightly augmented the survival of fibroblasts at single concentrations or in a narrow concentration range, but the results were not consistent among the cell lines. Chosen antioxidants (4-amino-TEMPO, curcumin, caffeic acid and p-coumaric acid) did not restore the level of glutathione decreased by H2O2. Hydrogen peroxide treatment did not induce secondary production of H2O2 and even decreased it, decreased mitochondrial potential in both cell lines and induced changes in the mitochondrial mass inconsistent between the lines. Antioxidant protected mitochondrial potential only in H8F2p25LM cells, but attenuated changes in mitochondrial mass. These results speak against the intermediacy of secondary oxidative stress in the SIPS induced by H2O2 and suggest that the small protective action of antioxidants is due to their effects on mitochondria.


Asunto(s)
Antioxidantes/farmacología , Senescencia Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Peróxido de Hidrógeno/farmacología , Apoptosis/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , beta-Galactosidasa/metabolismo
13.
Life Sci ; 227: 212-223, 2019 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-30928407

RESUMEN

AIMS: 3-Bromopyruvate (3-BP), an alkylating agent and a glycolytic inhibitor, is a promising anticancer agent, which can be efficient also against multidrug-resistant cancer cells. The aim of this study was to examine how 3-BP affects the survival and mobility of rat (MAT-LyLu and AT-2) and human (DU-145 and PC-3) metastatic prostate cancer cell lines. MAIN METHODS: Cytotoxicity was estimated with Neutral Red. Cell mobility was analyzed by time-lapse microscopic monitoring of trajectories of individual cells at 5-min intervals for 6h. ATP was estimated with luciferin/luciferase and glutathione (GSH) with o-phthalaldehyde. Actin cytoskeleton was visualized with phalloidin conjugated with Atto-488. KEY FINDINGS: All metastatic prostate cell lines studied were very sensitive to 3-BP (IC50 of 4-26µM). 3-Bromopyruvate drastically reduced cell movement even at concentrations of 5-10µM after 1h treatment. This compound depleted also cellular ATP and GSH, and disrupted actin cytoskeleton. SIGNIFICANCE: The data obtained suggest that 3-BP can potentially be useful for treatment of metastatic prostate cancer and, especially, be efficient in limiting metastasis.


Asunto(s)
Neoplasias de la Próstata/tratamiento farmacológico , Piruvatos/farmacología , Citoesqueleto de Actina/efectos de los fármacos , Adenosina Trifosfato/análisis , Animales , Línea Celular , Línea Celular Tumoral/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Glutatión/análisis , Humanos , Masculino , Invasividad Neoplásica , Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología , Ratas
14.
Eur J Pharm Sci ; 124: 1-9, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30118847

RESUMEN

Tumors still remain one of the main causes of mortality due to the lack of effective anti-cancer therapy. Recently it has been shown, that overexpression of inducible cyclooxygenase-2 (COX-2) and decrease of peroxisome proliferator-activated receptor γ (PPARγ) expression accompany many malignances, therefore, it has been proposed, that COX-2 inhibitors and PPARγ agonists are potential candidates for anticancer therapy and their synergistic, antineoplastic action has been described. In the present study a COX-2 inhibitor (celecoxib) and/or PPARγ agonist (Fmoc-l-Leucine) were conjugated with the biotinylated G3 PAMAM dendrimer to form a three different constructs targeted to cells with increased biotin uptake. All conjugates were characterized by the NMR spectroscopy. Investigation of three types of human cells: normal skin fibroblasts (BJ), immortalized keratinocytes (HaCaT) and cancer lines: glioblastoma (U-118 MG) and squamous cell carcinoma (SCC-15) revealed similar biotin labeled ATTO590 accumulation (after 24 h), except for SCC-15 with significantly lower loading. Constitutive expression of COX-2 protein was confirmed in all tested cells with significantly higher levels (2-2.5 times) in both cancer lines. Comparison of cytotoxicity of the new synthetized dendrimers clearly documented the highest cytotoxicity of the G31B16C15L dendrimer conjugated with both drugs (1: 1) as compared with drugs alone and single conjugates. Additive effects of construct with both compounds were shown for fibroblasts and both cancer cell lines in the order BJ > U-118 MG > SCC-15 with IC50 in the range: 0.69, 1.44 and 2.22 µM, respectively and lowest cytotoxicity in HaCaT cells (IC50 = 2.88). Our results showed, that biotinylated G3 PAMAM dendrimers substituted with COX-2 inhibitor, celecoxib, and PPARγ agonist, Fmoc-l-Leucine (1:1) may be a good candidate for local therapy of glioblastoma but not a skin cancer. Since the effect of PPARγ agonists on COX-2 expression vary depending upon the cell type, specificity of used agonist and the presence of other environmental factors, it is necessary to carefully evaluate the response of chosen drugs on the target cells.


Asunto(s)
Antineoplásicos/farmacología , Celecoxib/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Dendrímeros/farmacología , Leucina/análogos & derivados , PPAR gamma/agonistas , Biotinilación , Línea Celular , Supervivencia Celular/efectos de los fármacos , Humanos , Leucina/farmacología , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA