Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 12: 653177, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33967824

RESUMEN

The role of inflammation in airway epithelial cells and its regulation are important in several respiratory diseases. When disease is present, the barrier between the pulmonary circulation and the airway epithelium is damaged, allowing serum proteins to enter the airways. We identified that human glycated albumin (GA) is a molecule in human serum that triggers an inflammatory response in human airway epithelial cultures. We observed that single-donor human serum induced IL-8 secretion from primary human airway epithelial cells and from a cystic fibrosis airway cell line (CF1-16) in a dose-dependent manner. IL-8 secretion from airway epithelial cells was time dependent and rapidly increased in the first 4 h of incubation. Stimulation with GA promoted epithelial cells to secrete IL-8, and this increase was blocked by the anti-GA antibody. The IL-8 secretion induced by serum GA was 10-50-fold more potent than TNFα or LPS stimulation. GA also has a functional effect on airway epithelial cells in vitro, increasing ciliary beat frequency. Our results demonstrate that the serum molecule GA is pro-inflammatory and triggers host defense responses including increases in IL-8 secretion and ciliary beat frequency in the human airway epithelium. Although the binding site of GA has not yet been described, it is possible that GA could bind to the receptor for advanced glycated end products (RAGE), known to be expressed in the airway epithelium; however, further experiments are needed to identify the mechanism involved. We highlight a possible role for GA in airway inflammation.

2.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R656-R667, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29897817

RESUMEN

Xerostomia and hyposalivation are debilitating side effects for patients treated with ionizing radiation for head and neck cancer. Despite technological advances, collateral damage to the salivary glands remains a significant problem for patients and severely diminishes their quality of life. During the wound healing process, restoration of junctional contacts is necessary to maintain polarity, structural integrity, and orientation cues for secretion. However, little is known about whether these structural molecules are impacted following radiation damage and more importantly, during tissue restoration. We evaluated changes in adherens junctions and cytoskeletal regulators in an injury model where mice were irradiated with 5 Gy and a restoration model where mice injected postradiation with insulin-like growth factor 1 (IGF1) are capable of restoring salivary function. Using coimmunoprecipitation, there is a decrease in epithelial (E)-cadherin bound to ß-catenin following damage that is restored to untreated levels with IGF1. Via its adaptor proteins, ß-catenin links the cadherins to the cytoskeleton and part of this regulation is mediated through Rho-associated coiled-coil containing kinase (ROCK) signaling. In our radiation model, filamentous (F)-actin organization is fragmented, and there is an induction of ROCK activity. However, a ROCK inhibitor, Y-27632, prevents E-cadherin/ß-catenin dissociation following radiation treatment. These findings illustrate that radiation induces a ROCK-dependent disruption of the cadherin-catenin complex and alters F-actin organization at stages of damage when hyposalivation is observed. Understanding the regulation of these components will be critical in the discovery of therapeutics that have the potential to restore function in polarized epithelium.


Asunto(s)
Citoesqueleto de Actina/efectos de la radiación , Uniones Adherentes/efectos de la radiación , Glándula Parótida/efectos de la radiación , Traumatismos por Radiación/patología , Xerostomía/patología , Citoesqueleto de Actina/efectos de los fármacos , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/patología , Uniones Adherentes/efectos de los fármacos , Uniones Adherentes/metabolismo , Uniones Adherentes/patología , Animales , Cadherinas/metabolismo , Femenino , Factor I del Crecimiento Similar a la Insulina/administración & dosificación , Ratones , Glándula Parótida/efectos de los fármacos , Glándula Parótida/metabolismo , Glándula Parótida/patología , Unión Proteica , Dosis de Radiación , Traumatismos por Radiación/tratamiento farmacológico , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/fisiopatología , Recuperación de la Función , Salivación/efectos de los fármacos , Salivación/efectos de la radiación , Xerostomía/tratamiento farmacológico , Xerostomía/metabolismo , Xerostomía/fisiopatología , beta Catenina/metabolismo , Quinasas Asociadas a rho/metabolismo
3.
Sci Rep ; 8(1): 6347, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29679075

RESUMEN

Xerostomia and salivary hypofunction often result as a consequence of radiation therapy for head and neck cancers, which are diagnosed in roughly 60,000 individuals every year in the U.S. Due to the lack of effective treatments for radiation-induced salivary hypofunction, stem cell-based therapies have been suggested to regenerate the irradiated salivary glands. Pharmacologically, restoration of salivary gland function has been accomplished in mice by administering IGF-1 shortly after radiation treatment, but it is not known if salivary stem and progenitor cells play a role. We show that radiation inactivates aPKCζ and promotes nuclear redistribution of Yap in a population of label-retaining cells in the acinar compartment of the parotid gland (PG)- which comprises a heterogeneous pool of salivary progenitors. Administration of IGF-1 post-radiation maintains activation of aPKCζ and partially rescues Yap's cellular localization in label retaining cells, while restoring salivary function. Finally, IGF-1 fails to restore saliva production in mice lacking aPKCζ, demonstrating the importance of the kinase as a potential therapeutic target.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Fosfoproteínas/metabolismo , Proteína Quinasa C/metabolismo , Glándulas Salivales/efectos de la radiación , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Proteínas de Ciclo Celular , Femenino , Neoplasias de Cabeza y Cuello/radioterapia , Factor I del Crecimiento Similar a la Insulina/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Glándula Parótida/efectos de la radiación , Fosfoproteínas/fisiología , Proteína Quinasa C/fisiología , Radioterapia/efectos adversos , Saliva/efectos de la radiación , Glándulas Salivales/citología , Células Madre/citología , Xerostomía/terapia , Proteínas Señalizadoras YAP
4.
BMC Evol Biol ; 11: 302, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21999483

RESUMEN

BACKGROUND: The forkhead transcription factor gene E1 (FOXE1) plays an important role in regulation of thyroid development, palate formation and hair morphogenesis in mammals. However, avian FOXE1 genes have not been characterized and as such, codon evolution of FOXE1 orthologs in a broader evolutionary context of mammals and birds is not known. RESULTS: In this study we identified the avian FOXE1 gene in chicken, turkey and zebra finch, all of which consist of a single exon. Chicken and zebra finch FOXE1 are uniquely located on the sex-determining Z chromosome. In situ hybridization shows that chicken FOXE1 is specifically expressed in the developing thyroid. Its expression is initiated at the placode stage and is maintained during the stages of vesicle formation and follicle primordia. Based on this expression pattern, we propose that avian FOXE1 may be involved in regulating the evagination and morphogenesis of thyroid. Chicken FOXE1 is also expressed in growing feathers. Sequence analysis identified two microdeletions in the avian FOXE1 genes, corresponding to the loss of a transferable repression domain and an engrailed homology motif 1 (Eh1) C-terminal to the forkhead domain. The avian FOXE1 proteins exhibit a significant sequence divergence of the C-terminus compared to those of amphibian and mammalian FOXE1. The codon evolution analysis (dN/dS) of FOXE1 shows a significantly increased dN/dS ratio in the avian lineages, consistent with either a relaxed purifying selection or positive selection on a few residues in avian FOXE1 evolution. Further site specific analysis indicates that while relaxed purifying selection is likely to be a predominant cause of accelerated evolution at the 3'-region of avian FOXE1, a few residues might have evolved under positive selection. CONCLUSIONS: We have identified three avian FOXE1 genes based on synteny and sequence similarity as well as characterized the expression pattern of the chicken FOXE1 gene during development. Our evolutionary analyses suggest that while a relaxed purifying selection is likely to be the dominant force driving accelerated evolution of avian FOXE1 genes, a few residues may have evolved adaptively. This study provides a basis for future genetic and comparative biochemical studies of FOXE1.


Asunto(s)
Pollos/genética , Evolución Molecular , Pinzones/genética , Factores de Transcripción Forkhead/genética , Selección Genética , Pavos/genética , Región de Flanqueo 3'/genética , Animales , Secuencia de Bases , Cartilla de ADN/genética , Plumas/crecimiento & desarrollo , Plumas/metabolismo , Factores de Transcripción Forkhead/metabolismo , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN , Eliminación de Secuencia , Glándula Tiroides/crecimiento & desarrollo , Glándula Tiroides/metabolismo
5.
Dev Dyn ; 239(6): 1879-87, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20503383

RESUMEN

The Krüppel-like transcription factors (KLF) are zinc finger proteins that activate and suppress target gene transcription. Although KLF factors have been implicated in regulating many developmental processes, a comprehensive gene expression analysis has not been reported. Here we present the chicken KLF gene family and expression during the first five days of embryonic development. Fourteen chicken KLF genes or expressed sequences have been previously identified. Through synteny analysis and cDNA mapping, we have identified the KLF9 gene and determined that the gene presently named KLF1 is the true ortholog of KLF17 in other species. In situ hybridization expression analyses show that in general KLFs are broadly expressed in multiple cell and tissue types. Expression of KLFs 3, 7, 8, and 9, is widespread at all stages examined. KLFs 2, 4, 5, 6, 10, 11, 15, and 17 show more restricted patterns that suggest multiple functions during early stages of embryonic development.


Asunto(s)
Pollos/genética , Factores de Transcripción , Animales , Secuencia de Bases , Embrión de Pollo , Pollos/metabolismo , Embrión no Mamífero , Femenino , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Dedos de Zinc/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...