Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
bioRxiv ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38826362

RESUMEN

T cell receptors (TCRs) that recognize cancer neoantigens are important for anti-cancer immune responses and immunotherapy. Understanding the structural basis of TCR recognition of neoantigens provides insights into their exquisite specificity and can enable design of optimized TCRs. We determined crystal structures of a human TCR in complex with NRAS Q61K and Q61R neoantigen peptides and HLA-A1 MHC, revealing the molecular underpinnings for dual recognition and specificity versus wild-type NRAS peptide. We then used multiple versions of AlphaFold to model the corresponding complex structures, given the challenge of immune recognition for such methods. Interestingly, one implementation of AlphaFold2 (TCRmodel2) was able to generate accurate models of the complexes, while AlphaFold3 also showed strong performance, although success was lower for other complexes. This study provides insights into TCR recognition of a shared cancer neoantigen, as well as the utility and practical considerations for using AlphaFold to model TCR-peptide-MHC complexes.

2.
Skin Health Dis ; 4(3): e364, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38846693

RESUMEN

A recent article in the BJD postulated that it may be "Time to reconsider skin cancer-related follow-up visits". In our unit, we too have been seeing too many patient's unnecessarily and we put in place measures to reduce the numbers of outpatient appointments thereby diverting the resources saved into professional development.

3.
Viruses ; 16(5)2024 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-38793684

RESUMEN

Hepatitis C virus (HCV) is a major medical health burden and the leading cause of chronic liver disease and cancer worldwide. More than 58 million people are chronically infected with HCV, with 1.5 million new infections occurring each year. An effective HCV vaccine is a major public health and medical need as recognized by the World Health Organization. However, due to the high variability of the virus and its ability to escape the immune response, HCV rapidly accumulates mutations, making vaccine development a formidable challenge. An effective vaccine must elicit broadly neutralizing antibodies (bnAbs) in a consistent fashion. After decades of studies from basic research through clinical development, the antigen of choice is considered the E1E2 envelope glycoprotein due to conserved, broadly neutralizing antigenic domains located in the constituent subunits of E1, E2, and the E1E2 heterodimeric complex itself. The challenge has been elicitation of robust humoral and cellular responses leading to broad virus neutralization due to the relatively low immunogenicity of this antigen. In view of this challenge, structure-based vaccine design approaches to stabilize key antigenic domains have been hampered due to the lack of E1E2 atomic-level resolution structures to guide them. Another challenge has been the development of a delivery platform in which a multivalent form of the antigen can be presented in order to elicit a more robust anti-HCV immune response. Recent nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both the cellular and humoral components of the immune system. This review focuses on recent advances in understanding the E1E2 heterodimeric structure to facilitate a rational design approach and the potential for development of a multivalent nanoparticle-based HCV E1E2 vaccine. Both aspects are considered important in the development of an effective HCV vaccine that can effectively address viral diversity and escape.


Asunto(s)
Hepacivirus , Hepatitis C , Desarrollo de Vacunas , Proteínas del Envoltorio Viral , Vacunas contra Hepatitis Viral , Hepacivirus/inmunología , Hepacivirus/genética , Hepacivirus/química , Humanos , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Vacunas contra Hepatitis Viral/inmunología , Hepatitis C/prevención & control , Hepatitis C/inmunología , Hepatitis C/virología , Anticuerpos Neutralizantes/inmunología , Animales , Anticuerpos contra la Hepatitis C/inmunología
4.
Nucleic Acids Res ; 52(W1): W280-W286, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38769060

RESUMEN

The ability to control protein conformations and dynamics through structure-based design has been useful in various scenarios, including engineering of viral antigens for vaccines. One effective design strategy is the substitution of residues to proline amino acids, which due to its unique cyclic side chain can favor and rigidify key backbone conformations. To provide the community with a means to readily identify and explore proline designs for target proteins of interest, we developed the Proscan web server. Proscan provides assessment of backbone angles, energetic and deep learning-based favorability scores, and other parameters for proline substitutions at each position of an input structure, along with interactive visualization of backbone angles and candidate substitution sites on structures. It identifies known favorable proline substitutions for viral antigens, and was benchmarked against datasets of proline substitution stability effects from deep mutational scanning and thermodynamic measurements. This tool can enable researchers to identify and prioritize designs for prospective vaccine antigen targets, or other designs to favor stability of key protein conformations. Proscan is available at: https://proscan.ibbr.umd.edu.


Asunto(s)
Internet , Prolina , Conformación Proteica , Programas Informáticos , Prolina/química , Sustitución de Aminoácidos , Termodinámica , Modelos Moleculares , Ingeniería de Proteínas/métodos , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Aprendizaje Profundo
5.
Proc Natl Acad Sci U S A ; 121(22): e2320040121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38771882

RESUMEN

Speciation is often driven by selective processes like those associated with viability, mate choice, or local adaptation, and "speciation genes" have been identified in many eukaryotic lineages. In contrast, neutral processes are rarely considered as the primary drivers of speciation, especially over short evolutionary timeframes. Here, we describe a rapid vertebrate speciation event driven primarily by genetic drift. The White Sands pupfish (Cyprinodon tularosa) is endemic to New Mexico's Tularosa Basin where the species is currently managed as two Evolutionarily significant units (ESUs) and is of international conservation concern (Endangered). Whole-genome resequencing data from each ESU showed remarkably high and uniform levels of differentiation across the entire genome (global FST ≈ 0.40). Despite inhabiting ecologically dissimilar springs and streams, our whole-genome analysis revealed no discrete islands of divergence indicative of strong selection, even when we focused on an array of candidate genes. Demographic modeling of the joint allele frequency spectrum indicates the two ESUs split only ~4 to 5 kya and that both ESUs have undergone major bottlenecks within the last 2.5 millennia. Our results indicate the genome-wide disparities between the two ESUs are not driven by divergent selection but by neutral drift due to small population sizes, geographic isolation, and repeated bottlenecks. While rapid speciation is often driven by natural or sexual selection, here we show that isolation and drift have led to speciation within a few thousand generations. We discuss these evolutionary insights in light of the conservation management challenges they pose.


Asunto(s)
Flujo Genético , Especiación Genética , Animales , Peces Killi/genética , Peces Killi/clasificación , New Mexico , Selección Genética , Frecuencia de los Genes , Genoma/genética
6.
bioRxiv ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38712216

RESUMEN

Deep learning methods, trained on the increasing set of available protein 3D structures and sequences, have substantially impacted the protein modeling and design field. These advancements have facilitated the creation of novel proteins, or the optimization of existing ones designed for specific functions, such as binding a target protein. Despite the demonstrated potential of such approaches in designing general protein binders, their application in designing immunotherapeutics remains relatively unexplored. A relevant application is the design of T cell receptors (TCRs). Given the crucial role of T cells in mediating immune responses, redirecting these cells to tumor or infected target cells through the engineering of TCRs has shown promising results in treating diseases, especially cancer. However, the computational design of TCR interactions presents challenges for current physics-based methods, particularly due to the unique natural characteristics of these interfaces, such as low affinity and cross-reactivity. For this reason, in this study, we explored the potential of two structure-based deep learning protein design methods, ProteinMPNN and ESM-IF, in designing fixed-backbone TCRs for binding target antigenic peptides presented by the MHC through different design scenarios. To evaluate TCR designs, we employed a comprehensive set of sequence- and structure-based metrics, highlighting the benefits of these methods in comparison to classical physics-based design methods and identifying deficiencies for improvement.

7.
Sci Adv ; 10(15): eadk8157, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38598628

RESUMEN

Redesigning protein-protein interfaces is an important tool for developing therapeutic strategies. Interfaces can be redesigned by in silico screening, which allows for efficient sampling of a large protein space before experimental validation. However, computational costs limit the number of combinations that can be reasonably sampled. Here, we present combinatorial tyrosine (Y)/serine (S) selection (combYSelect), a computational approach combining in silico determination of the change in binding free energy (ΔΔG) of an interface with a highly restricted library composed of just two amino acids, tyrosine and serine. We used combYSelect to design two immunoglobulin G (IgG) heterodimers-combYSelect1 (L368S/D399Y-K409S/T411Y) and combYSelect2 (D399Y/K447S-K409S/T411Y)-that exhibit near-optimal heterodimerization, without affecting IgG stability or function. We solved the crystal structures of these heterodimers and found that dynamic π-stacking interactions and polar contacts drive preferential heterodimeric interactions. Finally, we demonstrated the utility of our combYSelect heterodimers by engineering both a bispecific antibody and a cytokine trap for two unique therapeutic applications.


Asunto(s)
Anticuerpos Biespecíficos , Inmunoglobulina G , Dimerización , Tirosina/metabolismo , Serina/metabolismo , Biología Computacional
8.
Protein Sci ; 33(1): e4865, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38073135

RESUMEN

High resolution antibody-antigen structures provide critical insights into immune recognition and can inform therapeutic design. The challenges of experimental structural determination and the diversity of the immune repertoire underscore the necessity of accurate computational tools for modeling antibody-antigen complexes. Initial benchmarking showed that despite overall success in modeling protein-protein complexes, AlphaFold and AlphaFold-Multimer have limited success in modeling antibody-antigen interactions. In this study, we performed a thorough analysis of AlphaFold's antibody-antigen modeling performance on 427 nonredundant antibody-antigen complex structures, identifying useful confidence metrics for predicting model quality, and features of complexes associated with improved modeling success. Notably, we found that the latest version of AlphaFold improves near-native modeling success to over 30%, versus approximately 20% for a previous version, while increased AlphaFold sampling gives approximately 50% success. With this improved success, AlphaFold can generate accurate antibody-antigen models in many cases, while additional training or other optimization may further improve performance.


Asunto(s)
Complejo Antígeno-Anticuerpo , Benchmarking
9.
Front Immunol ; 14: 1303304, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045695

RESUMEN

Adoptive cell therapy (ACT) with tumor-specific T cells has been shown to mediate durable cancer regression. Tumor-specific T cells are also the basis of other therapies, notably cancer vaccines. The main target of tumor-specific T cells are neoantigens resulting from mutations in self-antigens over the course of malignant transformation. The detection of neoantigens presents a major challenge to T cells because of their high structural similarity to self-antigens, and the need to avoid autoimmunity. How different a neoantigen must be from its wild-type parent for it to induce a T cell response is poorly understood. Here we review recent structural and biophysical studies of T cell receptor (TCR) recognition of shared cancer neoantigens derived from oncogenes, including p53R175H, KRASG12D, KRASG12V, HHATp8F, and PIK3CAH1047L. These studies have revealed that, in some cases, the oncogenic mutation improves antigen presentation by strengthening peptide-MHC binding. In other cases, the mutation is detected by direct interactions with TCR, or by energetically driven or other indirect strategies not requiring direct TCR contacts with the mutation. We also review antibodies designed to recognize peptide-MHC on cell surfaces (TCR-mimic antibodies) as an alternative to TCRs for targeting cancer neoantigens. Finally, we review recent computational advances in this area, including efforts to predict neoepitope immunogenicity and how these efforts may be advanced by structural information on peptide-MHC binding and peptide-MHC recognition by TCRs.


Asunto(s)
Neoplasias , Linfocitos T , Humanos , Proteínas Proto-Oncogénicas p21(ras) , Antígenos de Neoplasias , Neoplasias/genética , Neoplasias/terapia , Receptores de Antígenos de Linfocitos T , Péptidos , Autoantígenos
10.
Nat Commun ; 14(1): 8358, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38102143

RESUMEN

The spike (S) protein of SARS-CoV-2 is delivered to the virion assembly site in the ER-Golgi Intermediate Compartment (ERGIC) from both the ER and cis-Golgi in infected cells. However, the relevance and modulatory mechanism of this bidirectional trafficking are unclear. Here, using structure-function analyses, we show that S incorporation into virus-like particles (VLP) and VLP fusogenicity are determined by coatomer-dependent S delivery from the cis-Golgi and restricted by S-coatomer dissociation. Although S mimicry of the host coatomer-binding dibasic motif ensures retrograde trafficking to the ERGIC, avoidance of the host-like C-terminal acidic residue is critical for S-coatomer dissociation and therefore incorporation into virions or export for cell-cell fusion. Because this C-terminal residue is the key determinant of SARS-CoV-2 assembly and fusogenicity, our work provides a framework for the export of S protein encoded in genetic vaccines for surface display and immune activation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/metabolismo , Aparato de Golgi/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
11.
Nat Commun ; 14(1): 6725, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872153

RESUMEN

The resolution of SARS-CoV-2 replication hinges on cell-mediated immunity, wherein CD8+ T cells play a vital role. Nonetheless, the characterization of the specificity and TCR composition of CD8+ T cells targeting non-spike protein of SARS-CoV-2 before and after infection remains incomplete. Here, we analyzed CD8+ T cells recognizing six epitopes from the SARS-CoV-2 nucleocapsid (N) protein and found that SARS-CoV-2 infection slightly increased the frequencies of N-recognizing CD8+ T cells but significantly enhanced activation-induced proliferation compared to that of the uninfected donors. The frequencies of N-specific CD8+ T cells and their proliferative response to stimulation did not decrease over one year. We identified the N222-230 peptide (LLLDRLNQL, referred to as LLL thereafter) as a dominant epitope that elicited the greatest proliferative response from both convalescent and uninfected donors. Single-cell sequencing of T cell receptors (TCR) from LLL-specific CD8+ T cells revealed highly restricted Vα gene usage (TRAV12-2) with limited CDR3α motifs, supported by structural characterization of the TCR-LLL-HLA-A2 complex. Lastly, transcriptome analysis of LLL-specific CD8+ T cells from donors who had expansion (expanders) or no expansion (non-expanders) after in vitro stimulation identified increased chromatin modification and innate immune functions of CD8+ T cells in non-expanders. These results suggests that SARS-CoV-2 infection induces LLL-specific CD8+ T cell responses with a restricted TCR repertoire.


Asunto(s)
Linfocitos T CD8-positivos , COVID-19 , Humanos , SARS-CoV-2/metabolismo , Epítopos de Linfocito T , Receptores de Antígenos de Linfocitos T/metabolismo , Nucleocápside/metabolismo , Glicoproteína de la Espiga del Coronavirus
12.
Nat Commun ; 14(1): 3980, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407593

RESUMEN

Hepatitis C virus (HCV) is a major global health burden as the leading causative agent of chronic liver disease and hepatocellular carcinoma. While the main antigenic target for HCV-neutralizing antibodies is the membrane-associated E1E2 surface glycoprotein, the development of effective vaccines has been hindered by complications in the biochemical preparation of soluble E1E2 ectodomains. Here, we present a cryo-EM structure of an engineered, secreted E1E2 ectodomain of genotype 1b in complex with neutralizing antibodies AR4A, HEPC74, and IGH520. Structural characterization of the E1 subunit and C-terminal regions of E2 reveal an overall architecture of E1E2 that concurs with that observed for non-engineered full-length E1E2. Analysis of the AR4A epitope within a region of E2 that bridges between the E2 core and E1 defines the structural basis for its broad neutralization. Our study presents the structure of an E1E2 complex liberated from membrane via a designed scaffold, one that maintains all essential structural features of native E1E2. The study advances the understanding of the E1E2 heterodimer structure, crucial for the rational design of secreted E1E2 antigens in vaccine development.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Anticuerpos Neutralizantes , Epítopos , Proteínas del Envoltorio Viral
13.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37461571

RESUMEN

High resolution antibody-antigen structures provide critical insights into immune recognition and can inform therapeutic design. The challenges of experimental structural determination and the diversity of the immune repertoire underscore the necessity of accurate computational tools for modeling antibody-antigen complexes. Initial benchmarking showed that despite overall success in modeling protein-protein complexes, AlphaFold and AlphaFold-Multimer have limited success in modeling antibody-antigen interactions. In this study, we performed a thorough analysis of AlphaFold's antibody-antigen modeling performance on 429 nonredundant antibody-antigen complex structures, identifying useful confidence metrics for predicting model quality, and features of complexes associated with improved modeling success. We show the importance of bound-like component modeling in complex assembly accuracy, and that the current version of AlphaFold improves near-native modeling success to over 30%, versus approximately 20% for a previous version. With this improved success, AlphaFold can generate accurate antibody-antigen models in many cases, while additional training may further improve its performance.

14.
Nucleic Acids Res ; 51(W1): W569-W576, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37140040

RESUMEN

The cellular immune system, which is a critical component of human immunity, uses T cell receptors (TCRs) to recognize antigenic proteins in the form of peptides presented by major histocompatibility complex (MHC) proteins. Accurate definition of the structural basis of TCRs and their engagement of peptide-MHCs can provide major insights into normal and aberrant immunity, and can help guide the design of vaccines and immunotherapeutics. Given the limited amount of experimentally determined TCR-peptide-MHC structures and the vast amount of TCRs within each individual as well as antigenic targets, accurate computational modeling approaches are needed. Here, we report a major update to our web server, TCRmodel, which was originally developed to model unbound TCRs from sequence, to now model TCR-peptide-MHC complexes from sequence, utilizing several adaptations of AlphaFold. This method, named TCRmodel2, allows users to submit sequences through an easy-to-use interface and shows similar or greater accuracy than AlphaFold and other methods to model TCR-peptide-MHC complexes based on benchmarking. It can generate models of complexes in 15 minutes, and output models are provided with confidence scores and an integrated molecular viewer. TCRmodel2 is available at https://tcrmodel.ibbr.umd.edu.


Asunto(s)
Aprendizaje Profundo , Humanos , Receptores de Antígenos de Linfocitos T/química , Péptidos/química , Simulación por Computador , Antígenos
15.
J Biol Chem ; 299(4): 103035, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36806685

RESUMEN

T cells play a crucial role in combatting SARS-CoV-2 and forming long-term memory responses to this coronavirus. The emergence of SARS-CoV-2 variants that can evade T cell immunity has raised concerns about vaccine efficacy and the risk of reinfection. Some SARS-CoV-2 T cell epitopes elicit clonally restricted CD8+ T cell responses characterized by T cell receptors (TCRs) that lack structural diversity. Mutations in such epitopes can lead to loss of recognition by most T cells specific for that epitope, facilitating viral escape. Here, we studied an HLA-A2-restricted spike protein epitope (RLQ) that elicits CD8+ T cell responses in COVID-19 convalescent patients characterized by highly diverse TCRs. We previously reported the structure of an RLQ-specific TCR (RLQ3) with greatly reduced recognition of the most common natural variant of the RLQ epitope (T1006I). Opposite to RLQ3, TCR RLQ7 recognizes T1006I with even higher functional avidity than the WT epitope. To explain the ability of RLQ7, but not RLQ3, to tolerate the T1006I mutation, we determined structures of RLQ7 bound to RLQ-HLA-A2 and T1006I-HLA-A2. These complexes show that there are multiple structural solutions to recognizing RLQ and thereby generating a clonally diverse T cell response to this epitope that assures protection against viral escape and T cell clonal loss.


Asunto(s)
COVID-19 , Receptores de Antígenos de Linfocitos T , SARS-CoV-2 , Humanos , Linfocitos T CD8-positivos , COVID-19/inmunología , Epítopos de Linfocito T , Antígeno HLA-A2 , Receptores de Antígenos de Linfocitos T/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo
16.
Front Immunol ; 13: 995412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36172366

RESUMEN

Anti-COVID antibody therapeutics have been developed but not widely used due to their high cost and escape of neutralization from the emerging variants. Here, we describe the development of VHH-IgA1.1, a nanobody IgA fusion molecule as an inhalable, affordable and less invasive prophylactic and therapeutic treatment against SARS-CoV-2 Omicron variants. VHH-IgA1.1 recognizes a conserved epitope of SARS-CoV-2 spike protein Receptor Binding Domain (RBD) and potently neutralizes major global SARS-CoV-2 variants of concern (VOC) including the Omicron variant and its sub lineages BA.1.1, BA.2 and BA.2.12.1. VHH-IgA1.1 is also much more potent against Omicron variants as compared to an IgG Fc fusion construct, demonstrating the importance of IgA mediated mucosal protection for Omicron infection. Intranasal administration of VHH-IgA1.1 prior to or after challenge conferred significant protection from severe respiratory disease in K18-ACE2 transgenic mice infected with SARS-CoV-2 VOC. More importantly, for cost-effective production, VHH-IgA1.1 produced in Pichia pastoris had comparable potency to mammalian produced antibodies. Our study demonstrates that intranasal administration of affordably produced VHH-IgA fusion protein provides effective mucosal immunity against infection of SARS-CoV-2 including emerging variants.


Asunto(s)
COVID-19 , Inmunoglobulina A , SARS-CoV-2 , Anticuerpos de Dominio Único , Enzima Convertidora de Angiotensina 2 , Animales , Anticuerpos Antivirales/farmacología , Epítopos/química , Humanos , Inmunoglobulina A/farmacología , Inmunoglobulina G , Ratones , Anticuerpos de Dominio Único/farmacología , Glicoproteína de la Espiga del Coronavirus
17.
Front Immunol ; 13: 910367, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874680

RESUMEN

Antibody recognition of antigens is a critical element of adaptive immunity. One key class of antibody-antigen complexes is comprised of antibodies targeting linear epitopes of proteins, which in some cases are conserved elements of viruses and pathogens of relevance for vaccine design and immunotherapy. Here we report a detailed analysis of the structural and interface features of this class of complexes, based on a set of nearly 200 nonredundant high resolution antibody-peptide complex structures that were assembled from the Protein Data Bank. We found that antibody-bound peptides adopt a broad range of conformations, often displaying limited secondary structure, and that the same peptide sequence bound by different antibodies can in many cases exhibit varying conformations. Propensities of contacts with antibody loops and extent of antibody binding conformational changes were found to be broadly similar to those for antibodies in complex with larger protein antigens. However, antibody-peptide interfaces showed lower buried surface areas and fewer hydrogen bonds than antibody-protein antigen complexes, while calculated binding energy per buried interface area was found to be higher on average for antibody-peptide interfaces, likely due in part to a greater proportion of buried hydrophobic residues and higher shape complementarity. This dataset and these observations can be of use for future studies focused on this class of interactions, including predictive computational modeling efforts and the design of antibodies or epitope-based vaccine immunogens.


Asunto(s)
Complejo Antígeno-Anticuerpo , Vacunas , Complejo Antígeno-Anticuerpo/química , Antígenos , Sitios de Unión de Anticuerpos , Epítopos/química , Modelos Moleculares , Péptidos/química , Conformación Proteica
18.
Protein Sci ; 31(8): e4379, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35900023

RESUMEN

High-resolution experimental structural determination of protein-protein interactions has led to valuable mechanistic insights, yet due to the massive number of interactions and experimental limitations there is a need for computational methods that can accurately model their structures. Here we explore the use of the recently developed deep learning method, AlphaFold, to predict structures of protein complexes from sequence. With a benchmark of 152 diverse heterodimeric protein complexes, multiple implementations and parameters of AlphaFold were tested for accuracy. Remarkably, many cases (43%) had near-native models (medium or high critical assessment of predicted interactions accuracy) generated as top-ranked predictions by AlphaFold, greatly surpassing the performance of unbound protein-protein docking (9% success rate for near-native top-ranked models), however AlphaFold modeling of antibody-antigen complexes within our set was unsuccessful. We identified sequence and structural features associated with lack of AlphaFold success, and we also investigated the impact of multiple sequence alignment input. Benchmarking of a multimer-optimized version of AlphaFold (AlphaFold-Multimer) with a set of recently released antibody-antigen structures confirmed a low rate of success for antibody-antigen complexes (11% success), and we found that T cell receptor-antigen complexes are likewise not accurately modeled by that algorithm, showing that adaptive immune recognition poses a challenge for the current AlphaFold algorithm and model. Overall, our study demonstrates that end-to-end deep learning can accurately model many transient protein complexes, and highlights areas of improvement for future developments to reliably model any protein-protein interaction of interest.


Asunto(s)
Benchmarking , Proteínas , Algoritmos , Simulación del Acoplamiento Molecular , Unión Proteica , Conformación Proteica , Proteínas/química , Alineación de Secuencia
19.
Proc Natl Acad Sci U S A ; 119(11): e2112008119, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35263223

RESUMEN

SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine. Our previous work described the design and biochemical validation of a native-like soluble secreted form of E1E2 (sE1E2). Here, we describe the immunogenic characterization of the sE1E2 complex. sE1E2 elicited broadly neutralizing antibodies in immunized mice, with increased neutralization breadth relative to the membrane-associated E1E2, thereby validating this platform as a promising model system for vaccine development.


Asunto(s)
Anticuerpos ampliamente neutralizantes , Anticuerpos contra la Hepatitis C , Hepatitis C , Inmunogenicidad Vacunal , Proteínas del Envoltorio Viral , Vacunas contra Hepatitis Viral , Animales , Anticuerpos ampliamente neutralizantes/biosíntesis , Anticuerpos ampliamente neutralizantes/sangre , Hepatitis C/prevención & control , Anticuerpos contra la Hepatitis C/biosíntesis , Anticuerpos contra la Hepatitis C/sangre , Ratones , Multimerización de Proteína , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/inmunología , Vacunas contra Hepatitis Viral/química , Vacunas contra Hepatitis Viral/inmunología
20.
Commun Biol ; 5(1): 115, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136165

RESUMEN

ß-Coronaviruses such as SARS-CoV-2 hijack coatomer protein-I (COPI) for spike protein retrograde trafficking to the progeny assembly site in endoplasmic reticulum-Golgi intermediate compartment (ERGIC). However, limited residue-level details are available into how the spike interacts with COPI. Here we identify an extended COPI binding motif in the spike that encompasses the canonical K-x-H dibasic sequence. This motif demonstrates selectivity for αCOPI subunit. Guided by an in silico analysis of dibasic motifs in the human proteome, we employ mutagenesis and binding assays to show that the spike motif terminal residues are critical modulators of complex dissociation, which is essential for spike release in ERGIC. αCOPI residues critical for spike motif binding are elucidated by mutagenesis and crystallography and found to be conserved in the zoonotic reservoirs, bats, pangolins, camels, and in humans. Collectively, our investigation on the spike motif identifies key COPI binding determinants with implications for retrograde trafficking.


Asunto(s)
COVID-19/metabolismo , Proteína Coat de Complejo I/metabolismo , Proteína Coatómero/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Secuencias de Aminoácidos/genética , Secuencia de Aminoácidos , Sitios de Unión/genética , COVID-19/genética , COVID-19/virología , Proteína Coat de Complejo I/química , Proteína Coat de Complejo I/genética , Proteína Coatómero/química , Proteína Coatómero/genética , Simulación por Computador , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Células HEK293 , Humanos , Modelos Moleculares , Mutación , Filogenia , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/clasificación , Glicoproteína de la Espiga del Coronavirus/genética , Repeticiones WD40/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...