Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Eur J Clin Invest ; : e14288, 2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39058257

RESUMEN

BACKGROUND: Low physical performance is associated with higher mortality rate in multiple pathological conditions. Here, we aimed to determine whether body composition and physical performance could be prognostic factors in non-small cell lung cancer (NSCLC) patients. Moreover, we performed an exploratory approach to determine whether plasma samples from NSCLC patients could directly affect metabolic and structural phenotypes in primary muscle cells. METHODS: This prospective cohort study included 55 metastatic NSCLC patients and seven age-matched control subjects. Assessments included physical performance, body composition, quality of life and overall survival rate. Plasma samples from a sub cohort of 18 patients were collected for exploratory studies in cell culture and metabolomic analysis. RESULTS: We observed a higher survival rate in NSCLC patients with high performance in the timed up-and-go (+320%; p = .007), sit-to-stand (+256%; p = .01) and six-minute walking (+323%; p = .002) tests when compared to NSCLC patients with low physical performance. There was no significant association for similar analysis with body composition measurements (p > .05). Primary human myotubes incubated with plasma from NSCLC patients with low physical performance had impaired oxygen consumption rate (-54.2%; p < .0001) and cell proliferation (-44.9%; p = .007). An unbiased metabolomic analysis revealed a list of specific metabolites differentially expressed in the plasma of NSCLC patients with low physical performance. CONCLUSION: These novel findings indicate that physical performance is a prognostic factor for overall survival in NSCLC patients and provide novel insights into circulating factors that could impair skeletal muscle metabolism.

2.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38798570

RESUMEN

Parkinson's disease (PD) is the second most common neurodegenerative disorder and lacks disease-modifying therapies. We developed a Drosophila model for identifying novel glial-based therapeutic targets for PD. Human alpha-synuclein is expressed in neurons and individual genes are independently knocked down in glia. We performed a forward genetic screen, knocking down the entire Drosophila kinome in glia in alpha-synuclein expressing flies. Among the top hits were five genes (Ak1, Ak6, Adk1, Adk2, and awd) involved in adenosine metabolism. Knockdown of each gene improved locomotor dysfunction, rescued neurodegeneration, and increased brain adenosine levels. We determined that the mechanism of neuroprotection involves adenosine itself, as opposed to a downstream metabolite. We dove deeper into the mechanism for one gene, Ak1, finding rescue of dopaminergic neuron loss, alpha-synuclein aggregation, and bioenergetic dysfunction after glial Ak1 knockdown. We performed metabolomics in Drosophila and in human PD patients, allowing us to comprehensively characterize changes in purine metabolism and identify potential biomarkers of dysfunctional adenosine metabolism in people. These experiments support glial adenosine as a novel therapeutic target in PD.

3.
Elife ; 122024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517750

RESUMEN

Partial reprogramming by cyclic short-term expression of Yamanaka factors holds promise for shifting cells to younger states and consequently delaying the onset of many diseases of aging. However, the delivery of transgenes and potential risk of teratoma formation present challenges for in vivo applications. Recent advances include the use of cocktails of compounds to reprogram somatic cells, but the characteristics and mechanisms of partial cellular reprogramming by chemicals remain unclear. Here, we report a multi-omics characterization of partial chemical reprogramming in fibroblasts from young and aged mice. We measured the effects of partial chemical reprogramming on the epigenome, transcriptome, proteome, phosphoproteome, and metabolome. At the transcriptome, proteome, and phosphoproteome levels, we saw widescale changes induced by this treatment, with the most notable signature being an upregulation of mitochondrial oxidative phosphorylation. Furthermore, at the metabolome level, we observed a reduction in the accumulation of aging-related metabolites. Using both transcriptomic and epigenetic clock-based analyses, we show that partial chemical reprogramming reduces the biological age of mouse fibroblasts. We demonstrate that these changes have functional impacts, as evidenced by changes in cellular respiration and mitochondrial membrane potential. Taken together, these results illuminate the potential for chemical reprogramming reagents to rejuvenate aged biological systems and warrant further investigation into adapting these approaches for in vivo age reversal.


Asunto(s)
Células Madre Pluripotentes Inducidas , Rejuvenecimiento , Animales , Ratones , Rejuvenecimiento/fisiología , Proteoma/metabolismo , Multiómica , Reprogramación Celular/genética , Envejecimiento/fisiología , Células Madre Pluripotentes Inducidas/metabolismo
4.
Cell Host Microbe ; 32(2): 209-226.e7, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38215740

RESUMEN

Understanding the role of the microbiome in inflammatory diseases requires the identification of microbial effector molecules. We established an approach to link disease-associated microbes to microbial metabolites by integrating paired metagenomics, stool and plasma metabolomics, and culturomics. We identified host-microbial interactions correlated with disease activity, inflammation, and the clinical course of ulcerative colitis (UC) in the Predicting Response to Standardized Colitis Therapy (PROTECT) pediatric inception cohort. In severe disease, metabolite changes included increased dipeptides and tauro-conjugated bile acids (BAs) and decreased amino-acid-conjugated BAs in stool, whereas in plasma polyamines (N-acetylputrescine and N1-acetylspermidine) increased. Using patient samples and Veillonella parvula as a model, we uncovered nitrate- and lactate-dependent metabolic pathways, experimentally linking V. parvula expansion to immunomodulatory tryptophan metabolite production. Additionally, V. parvula metabolizes immunosuppressive thiopurine drugs through xdhA xanthine dehydrogenase, potentially impairing the therapeutic response. Our findings demonstrate that the microbiome contributes to disease-associated metabolite changes, underscoring the importance of these interactions in disease pathology and treatment.


Asunto(s)
Colitis Ulcerosa , Microbioma Gastrointestinal , Humanos , Niño , Colitis Ulcerosa/tratamiento farmacológico , Interacciones Microbiota-Huesped , Microbioma Gastrointestinal/genética , Progresión de la Enfermedad , Genes Microbianos
5.
bioRxiv ; 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37425825

RESUMEN

Partial reprogramming by cyclic short-term expression of Yamanaka factors holds promise for shifting cells to younger states and consequently delaying the onset of many diseases of aging. However, the delivery of transgenes and potential risk of teratoma formation present challenges for in vivo applications. Recent advances include the use of cocktails of compounds to reprogram somatic cells, but the characteristics and mechanisms of partial cellular reprogramming by chemicals remain unclear. Here, we report a multi-omics characterization of partial chemical reprogramming in fibroblasts from young and aged mice. We measured the effects of partial chemical reprogramming on the epigenome, transcriptome, proteome, phosphoproteome, and metabolome. At the transcriptome, proteome, and phosphoproteome levels, we saw widescale changes induced by this treatment, with the most notable signature being an upregulation of mitochondrial oxidative phosphorylation. Furthermore, at the metabolome level, we observed a reduction in the accumulation of aging-related metabolites. Using both transcriptomic and epigenetic clock-based analyses, we show that partial chemical reprogramming reduces the biological age of mouse fibroblasts. We demonstrate that these changes have functional impacts, as evidenced by changes in cellular respiration and mitochondrial membrane potential. Taken together, these results illuminate the potential for chemical reprogramming reagents to rejuvenate aged biological systems and warrant further investigation into adapting these approaches for in vivo age reversal.

6.
Cancer Discov ; 13(8): 1904-1921, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37262067

RESUMEN

Oncocytic (Hürthle cell) carcinoma of the thyroid (HCC) is genetically characterized by complex I mitochondrial DNA mutations and widespread chromosomal losses. Here, we utilize RNA sequencing and metabolomics to identify candidate molecular effectors activated by these genetic drivers. We find glutathione biosynthesis, amino acid metabolism, mitochondrial unfolded protein response, and lipid peroxide scavenging to be increased in HCC. A CRISPR-Cas9 knockout screen in a new HCC model reveals which pathways are key for fitness, and highlights loss of GPX4, a defense against lipid peroxides and ferroptosis, as a strong liability. Rescuing complex I redox activity with the yeast NADH dehydrogenase (NDI1) in HCC cells diminishes ferroptosis sensitivity, while inhibiting complex I in normal thyroid cells augments ferroptosis induction. Our work demonstrates unmitigated lipid peroxide stress to be an HCC vulnerability that is mechanistically coupled to the genetic loss of mitochondrial complex I activity. SIGNIFICANCE: HCC harbors abundant mitochondria, mitochondrial DNA mutations, and chromosomal losses. Using a CRISPR-Cas9 screen inspired by transcriptomic and metabolomic profiling, we identify molecular effectors essential for cell fitness. We uncover lipid peroxide stress as a vulnerability coupled to mitochondrial complex I loss in HCC. See related article by Frank et al., p. 1884. This article is highlighted in the In This Issue feature, p. 1749.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Glándula Tiroides/metabolismo , Carcinoma Hepatocelular/metabolismo , Peróxidos Lipídicos/metabolismo , Fermentación , Células Oxífilas/metabolismo , Neoplasias Hepáticas/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo
7.
J Clin Invest ; 133(8)2023 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-36821389

RESUMEN

How phosphate levels are detected in mammals is unknown. The bone-derived hormone fibroblast growth factor 23 (FGF23) lowers blood phosphate levels by reducing kidney phosphate reabsorption and 1,25(OH)2D production, but phosphate does not directly stimulate bone FGF23 expression. Using PET scanning and LC-MS, we found that phosphate increases kidney-specific glycolysis and synthesis of glycerol-3-phosphate (G-3-P), which then circulates to bone to trigger FGF23 production. Further, we found that G-3-P dehydrogenase 1 (Gpd1), a cytosolic enzyme that synthesizes G-3-P and oxidizes NADH to NAD+, is required for phosphate-stimulated G-3-P and FGF23 production and prevention of hyperphosphatemia. In proximal tubule cells, we found that phosphate availability is substrate-limiting for glycolysis and G-3-P production and that increased glycolysis and Gpd1 activity are coupled through cytosolic NAD+ recycling. Finally, we show that the type II sodium-dependent phosphate cotransporter Npt2a, which is primarily expressed in the proximal tubule, conferred kidney specificity to phosphate-stimulated G-3-P production. Importantly, exogenous G-3-P stimulated FGF23 production when Npt2a or Gpd1 were absent, confirming that it was the key circulating factor downstream of glycolytic phosphate sensing in the kidney. Together, these findings place glycolysis at the nexus of mineral and energy metabolism and identify a kidney-bone feedback loop that controls phosphate homeostasis.


Asunto(s)
Hormona Paratiroidea , Fosfatos , Animales , Fosfatos/metabolismo , Hormona Paratiroidea/metabolismo , NAD/metabolismo , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/metabolismo , Riñón/metabolismo , Homeostasis , Glucólisis , Mamíferos/metabolismo
8.
bioRxiv ; 2023 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-38234804

RESUMEN

Bacterial vaginosis (BV), a common syndrome characterized by Lactobacillus-deficient vaginal microbiota, is associated with adverse health outcomes. BV often recurs after standard antibiotic therapy in part because antibiotics promote microbiota dominance by Lactobacillus iners instead of Lactobacillus crispatus, which has more beneficial health associations. Strategies to promote L. crispatus and inhibit L. iners are thus needed. We show that oleic acid (OA) and similar long-chain fatty acids simultaneously inhibit L. iners and enhance L. crispatus growth. These phenotypes require OA-inducible genes conserved in L. crispatus and related species, including an oleate hydratase (ohyA) and putative fatty acid efflux pump (farE). FarE mediates OA resistance, while OhyA is robustly active in the human vaginal microbiota and sequesters OA in a derivative form that only ohyA-harboring organisms can exploit. Finally, OA promotes L. crispatus dominance more effectively than antibiotics in an in vitro model of BV, suggesting a novel approach for treatment.

9.
Cell ; 185(23): 4280-4297.e12, 2022 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-36323316

RESUMEN

The gut microbiome has an important role in infant health and development. We characterized the fecal microbiome and metabolome of 222 young children in Dhaka, Bangladesh during the first two years of life. A distinct Bifidobacterium longum clade expanded with introduction of solid foods and harbored enzymes for utilizing both breast milk and solid food substrates. The clade was highly prevalent in Bangladesh, present globally (at lower prevalence), and correlated with many other gut taxa and metabolites, indicating an important role in gut ecology. We also found that the B. longum clades and associated metabolites were implicated in childhood diarrhea and early growth, including positive associations between growth measures and B. longum subsp. infantis, indolelactate and N-acetylglutamate. Our data demonstrate geographic, cultural, seasonal, and ecological heterogeneity that should be accounted for when identifying microbiome factors implicated in and potentially benefiting infant development.


Asunto(s)
Bifidobacterium longum , Lactante , Niño , Femenino , Humanos , Preescolar , Bifidobacterium longum/metabolismo , Bifidobacterium/metabolismo , Destete , Oligosacáridos/metabolismo , Bangladesh , Leche Humana , Heces/microbiología
10.
Nat Microbiol ; 7(10): 1673-1685, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36138166

RESUMEN

Colonization of the intestine by oral microbes has been linked to multiple diseases such as inflammatory bowel disease and colon cancer, yet mechanisms allowing expansion in this niche remain largely unknown. Veillonella parvula, an asaccharolytic, anaerobic, oral microbe that derives energy from organic acids, increases in abundance in the intestine of patients with inflammatory bowel disease. Here we show that nitrate, a signature metabolite of inflammation, allows V. parvula to transition from fermentation to anaerobic respiration. Nitrate respiration, through the narGHJI operon, boosted Veillonella growth on organic acids and also modulated its metabolic repertoire, allowing it to use amino acids and peptides as carbon sources. This metabolic shift was accompanied by changes in carbon metabolism and ATP production pathways. Nitrate respiration was fundamental for ectopic colonization in a mouse model of colitis, because a V. parvula narG deletion mutant colonized significantly less than a wild-type strain during inflammation. These results suggest that V. parvula harness conditions present during inflammation to colonize in the intestine.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Veillonella , Adenosina Trifosfato/metabolismo , Aminoácidos/metabolismo , Animales , Carbono/metabolismo , Inflamación , Intestinos , Ratones , Nitratos/metabolismo , Veillonella/genética , Veillonella/metabolismo
11.
Aging Cell ; 21(9): e13682, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35996998

RESUMEN

Seasonal influenza causes mild to severe respiratory infections and significant morbidity, especially in older adults. Transcriptomic analysis in populations across multiple flu seasons has provided insights into the molecular determinants of vaccine response. Still, the metabolic changes that underlie the immune response to influenza vaccination remain poorly characterized. We performed untargeted metabolomics to analyze plasma metabolites in a cohort of younger and older subjects before and after influenza vaccination to identify vaccine-induced molecular signatures. Metabolomic and transcriptomic data were combined to define networks of gene and metabolic signatures indicative of high and low antibody response in these individuals. We observed age-related differences in metabolic baselines and signatures of antibody response to influenza vaccination and the abundance of α-linolenic and linoleic acids, sterol esters, fatty-acylcarnitines, and triacylglycerol metabolism. We identified a metabolomic signature associated with age-dependent vaccine response, finding increased tryptophan and decreased polyunsaturated fatty acids (PUFAs) in young high responders (HRs), while fatty acid synthesis and cholesteryl esters accumulated in older HRs. Integrated metabolomic and transcriptomic analysis shows that depletion of PUFAs, which are building blocks for prostaglandins and other lipid immunomodulators, in young HR subjects at Day 28 is related to a robust immune response to influenza vaccination. Increased glycerophospholipid levels were associated with an inflammatory response in older HRs to flu vaccination. This multi-omics approach uncovered age-related molecular markers associated with influenza vaccine response and provides insight into vaccine-induced metabolic responses that may help guide development of more effective influenza vaccines.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Anciano , Anticuerpos Antivirales , Humanos , Gripe Humana/genética , Gripe Humana/prevención & control , Metabolómica , Transcriptoma/genética , Vacunación
12.
JCI Insight ; 7(6)2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35167498

RESUMEN

Dyslipidemia and autophagy have been implicated in the pathogenesis of blinding neovascular age-related macular degeneration (NV-AMD). VLDL receptor (VLDLR), expressed in photoreceptors with a high metabolic rate, facilitates the uptake of triglyceride-derived fatty acids. Since fatty acid uptake is reduced in Vldlr-/- tissues, more remain in circulation, and the retina is fuel deficient, driving the formation in mice of neovascular lesions reminiscent of retinal angiomatous proliferation (RAP), a subtype of NV-AMD. Nutrient scarcity and energy failure are classically mitigated by increasing autophagy. We found that excess circulating lipids restrained retinal autophagy, which contributed to pathological angiogenesis in the Vldlr-/- RAP model. Triglyceride-derived fatty acid sensed by free fatty acid receptor 1 (FFAR1) restricted autophagy and oxidative metabolism in photoreceptors. FFAR1 suppressed transcription factor EB (TFEB), a master regulator of autophagy and lipid metabolism. Reduced TFEB, in turn, decreased sirtuin-3 expression and mitochondrial respiration. Metabolomic signatures of mouse RAP-like retinas were consistent with a role in promoting angiogenesis. This signature was also found in human NV-AMD vitreous. Restoring photoreceptor autophagy in Vldlr-/- retinas, either pharmacologically or by deleting Ffar1, enhanced metabolic efficiency and suppressed pathological angiogenesis. Dysregulated autophagy by circulating lipids might therefore contribute to the energy failure of photoreceptors driving neovascular eye diseases, and FFAR1 may be a target for intervention.


Asunto(s)
Degeneración Macular , Neovascularización Retiniana , Animales , Autofagia , Proliferación Celular , Ácidos Grasos , Degeneración Macular/patología , Ratones , Neovascularización Patológica , Receptores Acoplados a Proteínas G , Neovascularización Retiniana/patología , Triglicéridos
13.
Metabolism ; 125: 154915, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34678258

RESUMEN

BACKGROUND: Tricarboxylic acid (TCA) cycle deregulation may predispose to cardiovascular diseases, but the role of TCA cycle-related metabolites in the development of atrial fibrillation (AF) and heart failure (HF) remains unexplored. This study sought to investigate the association of TCA cycle-related metabolites with risk of AF and HF. METHODS: We used two nested case-control studies within the PREDIMED study. During a mean follow-up for about 10 years, 512 AF and 334 HF incident cases matched by age (±5 years), sex and recruitment center to 616 controls and 433 controls, respectively, were included in this study. Baseline plasma levels of citrate, aconitate, isocitrate, succinate, malate and d/l-2-hydroxyglutarate were measured with liquid chromatography-tandem mass spectrometry. Multivariable conditional logistic regression models were fitted to estimate odds ratios (OR) and 95% confidence intervals (95% CI) for metabolites and the risk of AF or HF. Potential confounders included smoking, family history of premature coronary heart disease, physical activity, alcohol intake, body mass index, intervention groups, dyslipidemia, hypertension, type 2 diabetes and medication use. RESULTS: Comparing extreme quartiles of metabolites, elevated levels of succinate, malate, citrate and d/l-2-hydroxyglutarate were associated with a higher risk of AF [ORQ4 vs. Q1 (95% CI): 1.80 (1.21-2.67), 2.13 (1.45-3.13), 1.87 (1.25-2.81) and 1.95 (1.31-2.90), respectively]. One SD increase in aconitate was directly associated with AF risk [OR (95% CI): 1.16 (1.01-1.34)]. The corresponding ORs (95% CI) for HF comparing extreme quartiles of malate, aconitate, isocitrate and d/l-2-hydroxyglutarate were 2.15 (1.29-3.56), 2.16 (1.25-3.72), 2.63 (1.56-4.44) and 1.82 (1.10-3.04), respectively. These associations were confirmed in an internal validation, except for aconitate and AF. CONCLUSION: These findings underscore the potential role of the TCA cycle in the pathogenesis of cardiac outcomes.


Asunto(s)
Fibrilación Atrial/epidemiología , Ciclo del Ácido Cítrico/fisiología , Insuficiencia Cardíaca/epidemiología , Ácido Aconítico/sangre , Anciano , Fibrilación Atrial/sangre , Estudios de Casos y Controles , Ácido Cítrico/sangre , Femenino , Glutaratos/sangre , Insuficiencia Cardíaca/sangre , Humanos , Incidencia , Isocitratos/sangre , Malatos/sangre , Masculino , Persona de Mediana Edad , Riesgo , Ácido Succínico/sangre
14.
Nature ; 596(7873): 576-582, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34381210

RESUMEN

Non-genetic mechanisms have recently emerged as important drivers of cancer therapy failure1, where some cancer cells can enter a reversible drug-tolerant persister state in response to treatment2. Although most cancer persisters remain arrested in the presence of the drug, a rare subset can re-enter the cell cycle under constitutive drug treatment. Little is known about the non-genetic mechanisms that enable cancer persisters to maintain proliferative capacity in the presence of drugs. To study this rare, transiently resistant, proliferative persister population, we developed Watermelon, a high-complexity expressed barcode lentiviral library for simultaneous tracing of each cell's clonal origin and proliferative and transcriptional states. Here we show that cycling and non-cycling persisters arise from different cell lineages with distinct transcriptional and metabolic programs. Upregulation of antioxidant gene programs and a metabolic shift to fatty acid oxidation are associated with persister proliferative capacity across multiple cancer types. Impeding oxidative stress or metabolic reprogramming alters the fraction of cycling persisters. In human tumours, programs associated with cycling persisters are induced in minimal residual disease in response to multiple targeted therapies. The Watermelon system enabled the identification of rare persister lineages that are preferentially poised to proliferate under drug pressure, thus exposing new vulnerabilities that can be targeted to delay or even prevent disease recurrence.


Asunto(s)
Ciclo Celular , Linaje de la Célula , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antioxidantes/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Linaje de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Clonales/efectos de los fármacos , Células Clonales/metabolismo , Células Clonales/patología , Código de Barras del ADN Taxonómico , Ácidos Grasos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Lentivirus/genética , Recurrencia Local de Neoplasia/genética , Neoplasias/genética , Neoplasias/metabolismo , Proteínas Oncogénicas/antagonistas & inhibidores , Oxidación-Reducción , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transcripción Genética/efectos de los fármacos
15.
Cell ; 184(16): 4168-4185.e21, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34216539

RESUMEN

Metabolism is a major regulator of immune cell function, but it remains difficult to study the metabolic status of individual cells. Here, we present Compass, an algorithm to characterize cellular metabolic states based on single-cell RNA sequencing and flux balance analysis. We applied Compass to associate metabolic states with T helper 17 (Th17) functional variability (pathogenic potential) and recovered a metabolic switch between glycolysis and fatty acid oxidation, akin to known Th17/regulatory T cell (Treg) differences, which we validated by metabolic assays. Compass also predicted that Th17 pathogenicity was associated with arginine and downstream polyamine metabolism. Indeed, polyamine-related enzyme expression was enhanced in pathogenic Th17 and suppressed in Treg cells. Chemical and genetic perturbation of polyamine metabolism inhibited Th17 cytokines, promoted Foxp3 expression, and remodeled the transcriptome and epigenome of Th17 cells toward a Treg-like state. In vivo perturbations of the polyamine pathway altered the phenotype of encephalitogenic T cells and attenuated tissue inflammation in CNS autoimmunity.


Asunto(s)
Autoinmunidad/inmunología , Modelos Biológicos , Células Th17/inmunología , Acetiltransferasas/metabolismo , Adenosina Trifosfato/metabolismo , Aerobiosis/efectos de los fármacos , Algoritmos , Animales , Autoinmunidad/efectos de los fármacos , Cromatina/metabolismo , Ciclo del Ácido Cítrico/efectos de los fármacos , Citocinas/metabolismo , Eflornitina/farmacología , Encefalomielitis Autoinmune Experimental/metabolismo , Encefalomielitis Autoinmune Experimental/patología , Epigenoma , Ácidos Grasos/metabolismo , Glucólisis/efectos de los fármacos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones Endogámicos C57BL , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Oxidación-Reducción/efectos de los fármacos , Putrescina/metabolismo , Análisis de la Célula Individual , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/inmunología , Células Th17/efectos de los fármacos , Transcriptoma/genética
16.
Metabolites ; 11(5)2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064960

RESUMEN

The increased prevalence of atrial fibrillation (AF) and heart failure (HF) highlights the need to better understand the mechanisms underlying these cardiovascular diseases (CVDs). In the present study, we aimed to evaluate the association between glycolysis-related metabolites and the risk of AF and HF in a Mediterranean population at high risk of CVD. We used two case-control studies nested within the PREDIMED trial. A total of 512 incident AF cases matched to 734 controls, and 334 incident HF cases matched to 508 controls, were included. Plasma metabolites were quantified by using hydrophilic interaction liquid chromatography coupled with high-resolution negative ion mode MS detection. Conditional logistic regression analyses were performed. The results showed no association between baseline plasma glycolysis intermediates and other related metabolites with AF. Only phosphoglycerate was associated with a higher risk of HF (OR for 1 SD increase: 1.28; 95% CI: 1.06, 1.53). The present findings do not support a role of the glycolysis pathway in the pathogenesis of AF. However, the increased risk of HF associated with phosphoglycerate requires further studies.

17.
J Clin Invest ; 131(2)2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33463549

RESUMEN

Mitochondrial disorders represent a large collection of rare syndromes that are difficult to manage both because we do not fully understand biochemical pathogenesis and because we currently lack facile markers of severity. The m.3243A>G variant is the most common heteroplasmic mitochondrial DNA mutation and underlies a spectrum of diseases, notably mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes (MELAS). To identify robust circulating markers of m.3243A>G disease, we first performed discovery proteomics, targeted metabolomics, and untargeted metabolomics on plasma from a deeply phenotyped cohort (102 patients, 32 controls). In a validation phase, we measured concentrations of prioritized metabolites in an independent cohort using distinct methods. We validated 20 analytes (1 protein, 19 metabolites) that distinguish patients with MELAS from controls. The collection includes classic (lactate, alanine) and more recently identified (GDF-15, α-hydroxybutyrate) mitochondrial markers. By mining untargeted mass-spectra we uncovered 3 less well-studied metabolite families: N-lactoyl-amino acids, ß-hydroxy acylcarnitines, and ß-hydroxy fatty acids. Many of these 20 analytes correlate strongly with established measures of severity, including Karnofsky status, and mechanistically, nearly all markers are attributable to an elevated NADH/NAD+ ratio, or NADH-reductive stress. Our work defines a panel of organelle function tests related to NADH-reductive stress that should enable classification and monitoring of mitochondrial disease.


Asunto(s)
Síndrome MELAS/sangre , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alanina/sangre , Biomarcadores/sangre , Niño , Preescolar , Femenino , Factor 15 de Diferenciación de Crecimiento/sangre , Humanos , Hidroxibutiratos/sangre , Ácido Láctico/sangre , Síndrome MELAS/genética , Masculino , Persona de Mediana Edad , Mutación , Índice de Severidad de la Enfermedad
18.
iScience ; 24(1): 101935, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33409479

RESUMEN

Genetic variation of the 16p11.2 deletion locus containing the KCTD13 gene and of CUL3 is linked with autism. This genetic connection suggested that substrates of a CUL3-KCTD13 ubiquitin ligase may be involved in disease pathogenesis. Comparison of Kctd13 mutant (Kctd13 -/- ) and wild-type neuronal ubiquitylomes identified adenylosuccinate synthetase (ADSS), an enzyme that catalyzes the first step in adenosine monophosphate (AMP) synthesis, as a KCTD13 ligase substrate. In Kctd13 -/- neurons, there were increased levels of succinyl-adenosine (S-Ado), a metabolite downstream of ADSS. Notably, S-Ado levels are elevated in adenylosuccinate lyase deficiency, a metabolic disorder with autism and epilepsy phenotypes. The increased S-Ado levels in Kctd13 -/- neurons were decreased by treatment with an ADSS inhibitor. Lastly, functional analysis of human KCTD13 variants suggests that KCTD13 variation may alter ubiquitination of ADSS. These data suggest that succinyl-AMP metabolites accumulate in Kctd13 -/- neurons, and this observation may have implications for our understanding of 16p11.2 deletion syndrome.

19.
Circulation ; 142(20): 1905-1924, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-32927962

RESUMEN

BACKGROUND: Whereas regular exercise is associated with lower risk of cardiovascular disease and mortality, mechanisms of exercise-mediated health benefits remain less clear. We used metabolite profiling before and after acute exercise to delineate the metabolic architecture of exercise response patterns in humans. METHODS: Cardiopulmonary exercise testing and metabolite profiling was performed on Framingham Heart Study participants (age 53±8 years, 63% women) with blood drawn at rest (n=471) and at peak exercise (n=411). RESULTS: We observed changes in circulating levels for 502 of 588 measured metabolites from rest to peak exercise (exercise duration 11.9±2.1 minutes) at a 5% false discovery rate. Changes included reductions in metabolites implicated in insulin resistance (glutamate, -29%; P=1.5×10-55; dimethylguanidino valeric acid [DMGV], -18%; P=5.8×10-18) and increases in metabolites associated with lipolysis (1-methylnicotinamide, +33%; P=6.1×10-67), nitric oxide bioavailability (arginine/ornithine + citrulline, +29%; P=2.8×10-169), and adipose browning (12,13-dihydroxy-9Z-octadecenoic acid +26%; P=7.4×10-38), among other pathways relevant to cardiometabolic risk. We assayed 177 metabolites in a separate Framingham Heart Study replication sample (n=783, age 54±8 years, 51% women) and observed concordant changes in 164 metabolites (92.6%) at 5% false discovery rate. Exercise-induced metabolite changes were variably related to the amount of exercise performed (peak workload), sex, and body mass index. There was attenuation of favorable excursions in some metabolites in individuals with higher body mass index and greater excursions in select cardioprotective metabolites in women despite less exercise performed. Distinct preexercise metabolite levels were associated with different physiologic dimensions of fitness (eg, ventilatory efficiency, exercise blood pressure, peak Vo2). We identified 4 metabolite signatures of exercise response patterns that were then analyzed in a separate cohort (Framingham Offspring Study; n=2045, age 55±10 years, 51% women), 2 of which were associated with overall mortality over median follow-up of 23.1 years (P≤0.003 for both). CONCLUSIONS: In a large sample of community-dwelling individuals, acute exercise elicits widespread changes in the circulating metabolome. Metabolic changes identify pathways central to cardiometabolic health, cardiovascular disease, and long-term outcome. These findings provide a detailed map of the metabolic response to acute exercise in humans and identify potential mechanisms responsible for the beneficial cardiometabolic effects of exercise for future study.


Asunto(s)
Índice de Masa Corporal , Enfermedades Cardiovasculares , Ejercicio Físico , Metaboloma , Metabolómica , Adulto , Anciano , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/terapia , Femenino , Humanos , Masculino , Massachusetts , Persona de Mediana Edad , Estudios Prospectivos
20.
J Endocr Soc ; 4(2): bvaa003, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-32099946

RESUMEN

After Roux-en-Y gastric bypass (RYGB) surgery, the intestine undergoes structural and metabolic reprogramming and appears to enhance use of energetic fuels including glucose and amino acids (AAs), changes that may be related to the surgery's remarkable metabolic effects. Consistently, RYGB alters serum levels of AAs and other metabolites, perhaps reflecting mechanisms for metabolic improvement. To home in on the intestinal contribution, we performed metabolomic profiling in portal venous (PV) blood from lean, Long Evans rats after RYGB vs sham surgery. We found that one-carbon metabolism (OCM), nitrogen metabolism, and arginine and proline metabolism were significantly enriched in PV blood. Nitrogen, OCM, and sphingolipid metabolism as well as ubiquinone biosynthesis were also overrepresented among metabolites uniquely affected in PV vs peripheral blood in RYGB-operated but not sham-operated animals. Peripheral blood demonstrated changes in AA metabolism, OCM, sphingolipid metabolism, and glycerophospholipid metabolism. Despite enrichment for many of the same pathways, the overall metabolite fingerprint of the 2 compartments did not correlate, highlighting a unique role for PV metabolomic profiling as a window into gut metabolism. AA metabolism and OCM were enriched in peripheral blood both from humans and lean rats after RYGB, demonstrating that these conserved pathways might represent mechanisms for clinical improvement elicited by the surgery in patients. Together, our data provide novel insight into RYGB's effects on the gut-liver axis and highlight a role for OCM as a key metabolic pathway affected by RYGB.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...