Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Antibiotics (Basel) ; 12(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36830160

RESUMEN

Due to the environmental risks of conventional Cu-based fungicides, Cu-loaded chitosan nanoparticles have been developed as nano-pesticides, aiming to protect plants against different diseases. In this sense, the objective was to verify the effects of chitosan nanoparticles containing Cu2+ ions on leaf discs of Coffea arabica cv. IPR 100 infected with Hemileia vastatrix. The treatments were water as a control (CONT), unloaded chitosan nanoparticles (NP), chitosan nanoparticles containing Cu2+ ions (NPCu), and free Cu2+ ions (Cu). Different concentrations of NP (0.25; 0.5; 1 g L-1) and Cu2+ ions (1.25; 2.5; 5 mmol L-1) were tested. The severity of the coffee rust was 42% in the CONT treatment, 22% in NP, and 2% in NPCu and Cu. The treatments protected coffee leaves; however, NPCu stood out for initial stress reduction, decreasing Cu phytotoxicity, promoting photosynthetic activity maintenance, and increasing antioxidant responses, conferring significant protection against coffee rust. At low concentrations (1.25 mmol L-1), NPCu showed higher bioactivity than Cu. These results suggest that Cu-loaded chitosan nanoparticles can induce a more significant plant defense response to the infection of Hemileia vastatrix than conventional Cu, avoiding the toxic effects of high Cu concentrations. Thus, this nanomaterial has great potential to be used as nano-pesticides for disease management.

2.
Antibiotics (Basel) ; 12(2)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36830248

RESUMEN

Nanoparticles are recognized due to their particular physical and chemical properties, which are conferred due to their size, in the range of nanometers. Nanoparticles are recognized for their application in medicine, electronics, and the textile industry, among others, but also in agriculture. The application of nanoparticles as nanofertilizers and biostimulants can help improve growth and crop productivity, and it has therefore been mentioned as an essential tool to control the adverse effects of abiotic stress. However, nanoparticles have also been noted for their exceptional antimicrobial properties. Therefore, this work reviews the state of the art of different nanoparticles that have shown the capacity to control biotic stress in plants. In this regard, metal and metal oxide nanoparticles, polymeric nanoparticles, and others, such as silica nanoparticles, have been described. Moreover, uptake and translocation are covered. Finally, future remarks about the studies on nanoparticles and their beneficial role in biotic stress management are made.

3.
Int J Pharm ; 630: 122465, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36476664

RESUMEN

Nitric oxide (NO) is an important endogenous molecule that plays several roles in biological systems. NO is synthesized in human skin by three isoforms of nitric oxide synthase (NOS) and, depending on the produced NO concentration, it can actuate in wound healing, dermal vasodilation, or skin defense against different pathogens, for example. Besides being endogenously produced, NO-based pharmacological formulations have been developed for dermatological applications targeting diverse pathologies such as bacterial infection, wound healing, leishmaniasis, and even esthetic issues such as acne and skin aging. Recent strategies focus mainly on developing smart NO-releasing nanomaterials/biomaterials, as they enable a sustained and targeted NO release, promoting an improved therapeutic effect. This review aims to overview and discuss the main mechanisms of NO in human skin, the recent progress in the field of dermatological formulations containing NO, and their application in several skin diseases, highlighting promising advances and future perspectives in the field.


Asunto(s)
Óxido Nítrico , Enfermedades de la Piel , Humanos , Óxido Nítrico/farmacología , Materiales Biocompatibles , Piel , Cicatrización de Heridas , Enfermedades de la Piel/tratamiento farmacológico
4.
New Phytol ; 234(4): 1119-1125, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35266146

RESUMEN

Nitric oxide (NO) is a multifunctional gaseous signal that modulates the growth, development and stress tolerance of higher plants. NO donors have been used to boost plant endogenous NO levels and to activate NO-related responses, but this strategy is often hindered by the relative instability of donors. Alternatively, nanoscience offers a new, promising way to enhance NO delivery to plants, as NO-releasing nanomaterials (e.g. S-nitrosothiol-containing chitosan nanoparticles) have many beneficial physicochemical and biochemical properties compared to non-encapsulated NO donors. Nano NO donors are effective in increasing tissue NO levels and enhancing NO effects both in animal and human systems. The authors believe, and would like to emphasize, that new trends and technologies are essential for advancing plant NO research and nanotechnology may represent a breakthrough in traditional agriculture and environmental science. Herein, we aim to draw the attention of the scientific community to the potential of NO-releasing nanomaterials in both basic and applied plant research as alternatives to conventional NO donors, providing a brief overview of the current knowledge and identifying future research directions. We also express our opinion about the challenges for the application of nano NO donors, such as the environmental footprint and stakeholder's acceptance of these materials.


Asunto(s)
Quitosano , Óxido Nítrico , Agricultura , Animales , Biotecnología , Nanotecnología , Plantas
5.
Int J Mol Sci ; 22(19)2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34638818

RESUMEN

In nanomedicine, hybrid nanomaterials stand out for providing new insights in both the diagnosis and treatment of several diseases. Once administered, engineered nanoparticles (NPs) interact with biological molecules, and the nature of this interaction might directly interfere with the biological fate and action of the NPs. In this work, we synthesized a hybrid magnetic nanostructure, with antibacterial and antitumoral potential applications, composed of a magnetite core covered by silver NPs, and coated with a modified chitosan polymer. As magnetite NPs readily oxidize to maghemite, we investigated the structural properties of the NPs after addition of the two successive layers using Mössbauer spectroscopy. Then, the structural characteristics of the NPs were correlated to their interaction with albumin, the major blood protein, to evidence the consequences of its binding on NP properties and protein retention. Thermodynamic parameters of the NPs-albumin interaction were determined. We observed that the more stable NPs (coated with modified chitosan) present a lower affinity for albumin in comparison to pure magnetite and magnetite/silver hybrid NPs. Surface properties were key players at the NP-biological interface. To the best of our knowledge, this is the first study that demonstrates a correlation between the structural properties of complex hybrid NPs and their interaction with albumin.


Asunto(s)
Quitosano/química , Materiales Biocompatibles Revestidos/química , Nanopartículas Magnéticas de Óxido de Hierro/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Oxidación-Reducción
6.
Antibiotics (Basel) ; 10(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203129

RESUMEN

Much progress has been achieved in the preparation and application of engineered nanoparticles (NPs) in the field of medicine, mainly for antibacterial and antiviral applications. In the war against bacteria and viruses, besides traditional antibiotics and antiviral drugs, metal-based nanoparticles, such as silver (AgNPs), copper (CuNPs), copper oxides (CuO-NPs), iron oxide (FeO-NPs), zinc oxide (ZnO-NPs), and titanium oxide (TiO2-NPs) have been used as potent antimicrobial agents. These nanoparticles can be synthesized by traditional methods, such as chemical and physical routes, or more recently by biogenic processes. A great variety of macro and microorganisms can be successfully used as reducing agents of metal salt precursors in the biogenic synthesis of metal-based NPs for antimicrobial activity. Depending on the nature of the biological agent, NPs with different sizes, aggregation states, morphology, surface coatings and charges can be obtained, leading to different antimicrobial effects. Considering the drug resistance to traditional therapies, the development of versatile nanomaterials with potent antimicrobial effects is under intensive investigation. In this sense, this review presents and discusses the recent progress in the preparation and application of metal-based nanoparticles biogenically synthesized for antibacterial and antivirus applications. The strength and limitations are critically discussed.

7.
Glob Chall ; 5(3): 2000049, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33614127

RESUMEN

The SARS-CoV-2 virus outbreak revealed that these nano-pathogens have the ability to rapidly change lives. Undoubtedly, SARS-CoV-2 as well as other viruses can cause important global impacts, affecting public health, as well as, socioeconomic development. But viruses are not only a public health concern, they are also a problem in agriculture. The current treatments are often ineffective, are prone to develop resistance, or cause considerable adverse side effects. The use of nanotechnology has played an important role to combat viral diseases. In this review three main aspects are in focus: first, the potential use of nanoparticles as carriers for drug delivery. Second, its use for treatments of some human viral diseases, and third, its application as antivirals in plants. With these three themes, the aim is to give to readers an overview of the progress in this promising area of biotechnology during the 2017-2020 period, and to provide a glance at how tangible is the effectiveness of nanotechnology against viruses. Future prospects are also discussed. It is hoped that this review can be a contribution to general knowledge for both specialized and non-specialized readers, allowing a better knowledge of this interesting topic.

8.
Virus Res ; 291: 198202, 2021 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-33086123

RESUMEN

The endogenous free radical nitric oxide (NO) plays a pivotal role in the immunological system. NO has already been reported as a potential candidate for use in the treatment of human coronavirus infections, including COVID-19. In fact, inhaled NO has been used in clinical settings for its antiviral respiratory action, and in the regulation of blood pressure to avoid clot formation. In this mini-review, we discuss recent progress concerning the antivirus activity of NO in clinical, pre-clinical and research settings, and its beneficial effects in the treatment of clinical complications in patients infected with coronaviruses and other respiratory viral diseases, including COVID-19. We also highlight promising therapeutic effects of NO donors allied to nanomaterials to combat COVID-19 and other human coronavirus infections. Nanomaterials can be designed to deliver sustained, localized NO release directly at the desired application site, enhancing the beneficial effects of NO and minimizing the side effects. Challenges and perspectives are presented to open new fields of research.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Nanopartículas/uso terapéutico , Óxido Nítrico/uso terapéutico , Administración por Inhalación , Antivirales/administración & dosificación , Infecciones por Coronavirus/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Humanos , Nanopartículas/administración & dosificación , Óxido Nítrico/administración & dosificación
9.
Nitric Oxide ; 106: 24-34, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33098968

RESUMEN

The aim of the current study is to report a simple and efficient method to chemically modify chitosan in order to form S-nitroso-chitosan for antibacterial applications. Firstly, commercial chitosan (CS) was modified to form thiolated chitosan (TCS) based on an easy and environmental-friendly method. TCS was featured based on physicochemical and morphological techniques. Results have confirmed that thiol groups in TCS formed after CS's primary amino groups were replaced with secondary amino groups. Free thiol groups in TCS were nitrosated to form S-nitrosothiol moieties covalently bond to the polymer backbone (S-nitroso-CS). Kinetic measurements have shown that S-nitroso-CS was capable of generating NO in a sustained manner at levels suitable for biomedical applications. The antibacterial activities of CS, TCS and S-nitroso-CS were evaluated based on the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and time-kill curves determined for Escherichia coli, Staphylococcus aureus and Streptococcus mutans. MIC/MBC values reached 25/25, 0.7/0.7 and 3.1/3.1 µg mL-1 for CS/TCS and 3.1/3.1, 0.1/0.2, 0.1/0.2 µg mL-1 for S-nitroso-CS, respectively. Decreased MIC and MBC values have indicated that S-nitroso-CS has higher antibacterial activity than CS and TCS. Time-kill curves have shown that the bacterial cell viability decreased 5-fold for E. coli and 2-fold for S. mutans in comparison to their respective controls, after 0.5 h of incubation with S-nitroso-CS. Together, CS backbone chemically modified with S-nitroso moieties have yielded a polymer capable of generating therapeutic NO concentrations with strong antibacterial effect.


Asunto(s)
Antibacterianos/farmacología , Quitosano/farmacología , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/farmacología , Compuestos Nitrosos/farmacología , Antibacterianos/síntesis química , Supervivencia Celular/efectos de los fármacos , Quitosano/síntesis química , Liberación de Fármacos , Escherichia coli/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Óxido Nítrico/química , Donantes de Óxido Nítrico/síntesis química , Compuestos Nitrosos/síntesis química , Staphylococcus aureus/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos
10.
Biochem Pharmacol ; 176: 113740, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31786262

RESUMEN

Nitric oxide (NO) is an endogenous free radical that controls important physiological and pathophysiological processes, including a role in cancer biology. NO can have a direct toxic effect on tumors, or it can sensitize cancer cells and contribute to the reversal of multidrug resistance (MDR). As NO is a gas and free radical, NO donors have been investigated for their anticancer effects. In recent years, the combination of NO donors with nanomaterials has been emerging as a promising strategy to promote spatial-temporal NO release/generation directly at the target site of application (tumor tissue). Smart nanocarriers that are able to release NO under controlled stimuli have been extensively developed. Moreover, important publications have demonstrated the promising applications of NO-releasing nanomaterials in combination with traditional chemotherapies in which NO can sensitize cancer cells. In this direction, this review presents and discusses the recent progress in the design of versatile nanocarriers that are able to release/generate therapeutic amounts of NO and which can be combined with conventional anticancer therapies. These nanocarriers have the ability to release NO on-demand by external stimuli such as pH, wave, or light exposure. In addition, the possible mechanisms of NO in sensitizing tumor tissue and the impact and challenges of nanomaterials in cancer treatment are also presented and discussed. The biological and pharmacological aspects of NO donors in cancer are discussed. Finally, challenges and perspectives in the development of versatile nanoplatforms to efficiently deliver NO in clinical cancer treatment are highlighted.


Asunto(s)
Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico/metabolismo , Antineoplásicos/administración & dosificación , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Nanoestructuras/administración & dosificación , Neoplasias/metabolismo , Donantes de Óxido Nítrico/administración & dosificación
11.
Front Microbiol ; 10: 1866, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31456780

RESUMEN

Previously we reported the biosynthesis of intracellular cadmium sulfide quantum dots (CdS QDs) at low temperatures by the Antarctic strain Pseudomonas fragi GC01. Here we studied the role of volatile sulfur compounds (VSCs) in the biosynthesis of CdS QDs by P. fragi GC01. The biosynthesis of nanoparticles was evaluated in the presence of sulfate, sulfite, thiosulfate, sulfide, cysteine and methionine as sole sulfur sources. Intracellular biosynthesis occurred with all sulfur sources tested. However, extracellular biosynthesis was observed only in cultures amended with cysteine (Cys) and methionine (Met). Extracellular nanoparticles were characterized by dynamic light scattering, absorption and emission spectra, energy dispersive X-ray, atomic force microscopy, transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Purified QDs correspond to cubic nanocrystals of CdS with sizes between 2 and 16 nm. The analysis of VSCs revealed that P. fragi GC01 produced hydrogen sulfide (H2S), methanethiol (MeSH) and dimethyl sulfide (DMS) in the presence of sulfate, Met or Cys. Dimethyl disulfide (DMDS) was only detected in the presence of Met. Interestingly, MeSH was the main VSC produced in this condition. In addition, MeSH was the only VSC for which the concentration decreased in the presence of cadmium (Cd) of all the sulfur sources tested, suggesting that this gas interacts with Cd to form nanoparticles. The role of MeSH and DMS on Cds QDs biosynthesis was evaluated in two mutants of the Antarctic strain Pseudomonas deceptionensis M1T: megL - (unable to produce MeSH from Met) and mddA - (unable to generate DMS from MeSH). No biosynthesis of QDs was observed in the megL - strain, confirming the importance of MeSH in QD biosynthesis. In addition, the production of QDs in the mddA - strain was not affected, indicating that DMS is not a substrate for the biosynthesis of nanoparticles. Here, we confirm a link between MeSH production and CdS QDs biosynthesis when Met is used as sole sulfur source. This work represents the first report that directly associates the production of MeSH with the bacterial synthesis of QDs, thus revealing the importance of different VSCs in the biological generation of metal sulfide nanostructures.

12.
ACS Appl Mater Interfaces ; 11(6): 6589-6604, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30653288

RESUMEN

Because of their antibacterial activity, silver nanoparticles (AgNPs) have been explored in biomedical applications. Similarly, nitric oxide (NO) is an important endogenous free radical with an antimicrobial effect and toxicity toward cancer cells that plays pivotal roles in several processes. In this work, biogenic AgNPs were prepared using green tea extract and the principles of green chemistry, and the NO donor S-nitrosoglutathione (GSNO) was prepared by the nitrosation of glutathione. To enhance the potentialities of GSNO and AgNPs in biomedical applications, the NO donor and metallic nanoparticles were individually or simultaneously incorporated into polymeric solid films of poly(vinyl alcohol) (PVA) and poly(ethylene glycol) (PEG). The resulting solid nanocomposites were characterized by several techniques, and the diffusion profiles of GSNO and AgNPs were investigated. The results demonstrated the formation of homogeneous PVA/PEG solid films containing GSNO and nanoscale AgNPs that are distributed in the polymeric matrix. PVA/PEG films containing AgNPs demonstrated a potent antibacterial effect against Gram-positive and Gram-negative bacterial strains. GSNO-containing PVA/PEG films demonstrated toxicity toward human cervical carcinoma and human prostate cancer cell lines. Interestingly, the incorporation of AgNPs in PVA/PEG/GSNO films had a superior effect on the decrease of cell viability of both cancer cell lines, compared with cells treated with films containing GSNO or AgNPs individually. To our best knowledge, this is the first report to describe the preparation of PVA/PEG solid films containing GSNO and/or biogenically synthesized AgNPs. These polymeric films might find important biomedical applications as a solid material with antimicrobial and antitumorigenic properties.


Asunto(s)
Antiinfecciosos/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Alcohol Polivinílico/química , S-Nitrosoglutatión/química , Plata/química , Antiinfecciosos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Pruebas Antimicrobianas de Difusión por Disco , Bacterias Gramnegativas/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Tecnología Química Verde , Humanos , Té/química , Té/metabolismo
13.
Chemistry ; 21(27): 9889-94, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26014031

RESUMEN

Hybrid materials in which reduced graphene oxide (rGO) is decorated with Au nanoparticles (rGO-Au NPs) were obtained by the in situ reduction of GO and AuCl4(-)(aq) by ascorbic acid. On laser excitation, rGO could be oxidized as a result of the surface plasmon resonance (SPR) excitation in the Au NPs, which generates activated O2 through the transfer of SPR-excited hot electrons to O2 molecules adsorbed from air. The SPR-mediated catalytic oxidation of p-aminothiophenol (PATP) to p,p'-dimercaptoazobenzene (DMAB) was then employed as a model reaction to probe the effect of rGO as a support for Au NPs on their SPR-mediated catalytic activities. The increased conversion of PATP to DMAB relative to individual Au NPs indicated that charge-transfer processes from rGO to Au took place and contributed to improved SPR-mediated activity. Since the transfer of electrons from Au to adsorbed O2 molecules is the crucial step for PATP oxidation, in addition to the SPR-excited hot electrons of Au NPs, the transfer of electrons from rGO to Au contributed to increasing the electron density of Au above the Fermi level and thus the Au-to-O2 charge-transfer process.

14.
Angew Chem Int Ed Engl ; 54(48): 14427-31, 2015 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-26768109

RESUMEN

By a combination of theoretical and experimental design, we probed the effect of a quasi-single electron on the surface plasmon resonance (SPR)-mediated catalytic activities of Ag nanoparticles. Specifically, we started by theoretically investigating how the E-field distribution around the surface of a Ag nanosphere was influenced by static electric field induced by one, two, or three extra fixed electrons embedded in graphene oxide (GO) next to the Ag nanosphere. We found that the presence of the extra electron(s) changed the E-field distributions and led to higher electric field intensities. Then, we experimentally observed that a quasi-single electron trapped at the interface between GO and Ag NPs in Ag NPs supported on graphene oxide (GO-Ag NPs) led to higher catalytic activities as compared to Ag and GO-Ag NPs without electrons trapped at the interface, representing the first observation of catalytic enhancement promoted by a quasi-single electron.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA