Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Dalton Trans ; 49(42): 14749-14757, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33140781

RESUMEN

The recent research developments on the active sites in Fe-zeolites for redox catalysis are discussed. Building on the characterisation of the α-Fe/α-O active sites in the beta and chabazite zeolites, we demonstrate a bottom-up approach to successfully understand and develop Fe-zeolite catalysts. We use the room temperature benzene to phenol reaction as a relevant example. We then suggest how the spectroscopic identification of other monomeric and dimeric iron sites could be tackled. The challenges in the characterisation of active sites and intermediates in NOX selective catalytic reduction catalysts and further development of catalysts for mild partial methane oxidation are briefly discussed.

2.
Phys Chem Chem Phys ; 22(43): 25136-25145, 2020 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-33118561

RESUMEN

Efficient and selective hydrolysis of inert peptide bonds is of paramount importance. MOF-808, a metal-organic framework based on Zr6 nodes, can hydrolyze peptide bonds efficiently under biologically relevant conditions. However, the details of the catalyst structure and of the underlying catalytic reaction mechanism are challenging to establish. By means of DFT calculations we first investigate the speciation of the Zr6 nodes and identify the nature of ligands that bind to the Zr6O8H4-x core in aqueous conditions. The core is predicted to strongly prefer a Zr6O8H4 protonation state and to be predominantly decorated by bridging formate ligands, giving Zr6(µ3-O)4(µ3-OH)4(BTC)2(HCOO)6 and Zr6(µ3-O)4(µ3-OH)4(BTC)2(HCOO)5(OH)(H2O) as the most favorable structures at physiological pH. The GlyGly peptide can bind MOF in several different ways, with the preferred structure involving coordination through the terminal carboxylate analogously to the binding mode of formate ligand. The pre-reactive binding mode in which the amide carbonyl oxygen coordinates the metal core lies 7 kcal higher in free energy. The preferred reaction pathway is predicted to have two close-lying transition states, either of which could be the rate-determining step: nucleophilic attack on the amide carbon atom and C-N bond breaking, with calculated relative free energies of 31 and 32 kcal mol-1, respectively. Replacement of formate by water and hydroxide at the Zr6 node is predicted to be possible, but does not appear to play a role in the hydrolysis mechanism.


Asunto(s)
Estructuras Metalorgánicas/química , Péptidos/química , Hidrólisis , Péptidos/metabolismo , Unión Proteica
3.
Inorg Chem ; 59(16): 11493-11502, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32799474

RESUMEN

An elaborate study with multireference second-order perturbation theory has been performed to elucidate the electronic structure and relative energy of three relevant states of FeNO corroles, namely the S = 0 ground state, the lowest S = 1 state, and the anion S = 1/2 state. On the basis of CASSCF and DMRG calculations with an active space including up to 37 orbitals, the electronic structure of the ground state was analyzed, with special emphasis on the diradical nature of the Fe-corrole and Fe-NO bonds. The results essentially confirm an earlier suggestion from B3LYP of a non-innocent corrole•2- bound to an {FeNO}7 unit, although the contribution of diradical character to the iron-corrole bond is found to be limited to 35%. This limited diradical character explains the high relative energy (16.5 kcal/mol) of the corresponding triplet state, where the corrole•2- is ferromagnetically coupled to the S = 1/2 {FeNO}7 unit. Consistent with experimental findings, reduction is found to take place at the corrole ligand, with a calculated electron affinity of 52.5 kcal/mol. The results obtained from the correlated calculations were also compared to DFT with a broad range of functionals.

4.
J Chem Phys ; 152(21): 214117, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32505150

RESUMEN

MOLCAS/OpenMolcas is an ab initio electronic structure program providing a large set of computational methods from Hartree-Fock and density functional theory to various implementations of multiconfigurational theory. This article provides a comprehensive overview of the main features of the code, specifically reviewing the use of the code in previously reported chemical applications as well as more recent applications including the calculation of magnetic properties from optimized density matrix renormalization group wave functions.

5.
J Chem Theory Comput ; 15(11): 5925-5964, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31509407

RESUMEN

In this Article we describe the OpenMolcas environment and invite the computational chemistry community to collaborate. The open-source project already includes a large number of new developments realized during the transition from the commercial MOLCAS product to the open-source platform. The paper initially describes the technical details of the new software development platform. This is followed by brief presentations of many new methods, implementations, and features of the OpenMolcas program suite. These developments include novel wave function methods such as stochastic complete active space self-consistent field, density matrix renormalization group (DMRG) methods, and hybrid multiconfigurational wave function and density functional theory models. Some of these implementations include an array of additional options and functionalities. The paper proceeds and describes developments related to explorations of potential energy surfaces. Here we present methods for the optimization of conical intersections, the simulation of adiabatic and nonadiabatic molecular dynamics, and interfaces to tools for semiclassical and quantum mechanical nuclear dynamics. Furthermore, the Article describes features unique to simulations of spectroscopic and magnetic phenomena such as the exact semiclassical description of the interaction between light and matter, various X-ray processes, magnetic circular dichroism, and properties. Finally, the paper describes a number of built-in and add-on features to support the OpenMolcas platform with postcalculation analysis and visualization, a multiscale simulation option using frozen-density embedding theory, and new electronic and muonic basis sets.

6.
Chemistry ; 25(63): 14370-14381, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31469197

RESUMEN

Creating efficient and residue-directed artificial proteases is a challenging task due to the extreme inertness of the peptide bond, combined with the difficulty of achieving specific interactions between the catalysts and the protein side chains. Herein we report strictly site-selective hydrolysis of a multi-subunit globular protein, hemoglobin (Hb) from bovine blood, by a range of ZrIV -substituted polyoxometalates (Zr-POMs) in mildly acidic and physiological pH solutions. Among 570 peptide bonds in Hb, selective cleavage was observed at only eleven sites, each occurring at Asp-X peptide bonds located in the positive patches on the protein surface. The molecular origins of the observed Asp-X selectivity were rationalized by means of molecular docking, DFT-based binding, and mechanistic studies on model peptides. The proposed mechanism of hydrolysis involves coordination of the amide oxygen to ZrIV followed by a direct nucleophilic attack of the side chain carboxylate group on the C-terminal amide carbon atom with formation of a cyclic anhydride, which is further hydrolyzed to give the reaction products. The activation energy for the cleavage of the structurally related Glu-X sequence compared to Asp-X was calculated to be higher by 1.4 kcal mol-1 , which corresponds to a difference of about one order of magnitude in the rates of hydrolysis. The higher activation energy is attributed to the higher strain present in the six-membered ring of glutaric anhydride (Glu-X), as compared to the five-membered ring of the succinic anhydride (Asp-X) intermediate. Similarly, the cleavage at X-Asp and X-Glu bonds are predicted to be kinetically less likely as the corresponding activation energies were 6 kcal mol-1 higher, explaining the experimentally observed selectivity. The synergy between the negatively charged polyoxometalate cluster, which binds at positive patches on protein surfaces, and selective activation of Asp-X peptide bonds located in these regions by ZrIV ions, results in a novel class of artificial proteases with aspartate-directed reactivity, which is very rare among naturally occurring proteases.


Asunto(s)
Ácido Aspártico/química , Materiales Biomiméticos/química , Complejos de Coordinación/química , Compuestos de Tungsteno/química , Circonio/química , Secuencia de Aminoácidos , Sitios de Unión , Materiales Biomiméticos/metabolismo , Catálisis , Complejos de Coordinación/metabolismo , Hemoglobinas/química , Hemoglobinas/metabolismo , Hidrólisis , Espectroscopía de Resonancia Magnética , Conformación Molecular , Simulación del Acoplamiento Molecular , Péptido Hidrolasas/química , Péptido Hidrolasas/metabolismo , Termodinámica
7.
Chemistry ; 25(54): 12491-12496, 2019 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-31313861

RESUMEN

Density functional theory (DFT) and an advanced ab initio technique based on density matrix renormalization group (DMRG-CASPT2) were employed to investigate a reactive N-bridged high-valent diiron-oxo species involved in H-abstraction reactions. We studied in detail two important doublet states, the ground state with two iron(IV) centers and a mixed valence FeV -FeIV excited state. We found that the latter state is low-lying. Furthermore, its electronic structure and spin density imply that it has significantly higher H-abstraction reactivity than the ground state. This low-lying excited state might be the reason behind the high oxidation reactivity of this diiron-oxo species towards methane.

8.
J Chem Theory Comput ; 15(5): 3033-3043, 2019 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-30995039

RESUMEN

Employing second-order perturbation theory based on the density matrix renormalization group (DMRG-CASPT2), this work aims at providing a quantitative description of the spin state energetics of a chloro-ligated iron(IV)-oxo porphyrin as a model for the cytochromes P450 active species, also known as compound I (Cpd I). We explored DMRG-CASPT2 to its full extent with an extensive active space (up to 31 active orbitals) as well as a large number of renormalized states m (up to 10000). Different flavors of DMRG-CASPT2, using either the costly exact 4-particle reduced density matrix (4-RDM) or the cheaper cumulant approximated 4-RDM (cu(4)), were analyzed. All flavors essentially converge to similar relative energies between different spin states. Including a correction for the protein environment, we found a quartet FeIVO ground state and, more importantly, a thermally accessible doublet FeVO excited state that might directly contribute to the reactivity of this iron-oxo species. Our results also showed that cheaper approaches, such as CASPT2 based on a smaller active space or the cumulant approximation DMRG-cu(4)-CASPT2, are capable of accurately describing the spin state energetics of this species.

9.
J Chem Theory Comput ; 15(2): 922-937, 2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30605326

RESUMEN

In a large variety of studies, the coupled-cluster method with singles, doubles, and perturbative triples (CCSD(T)) is used as a reference for benchmarking the performance of density functional theory (DFT) functionals. In the case of open-shell species, this theory can be applied in different forms depending on the restricted or unrestricted treatment of spin. In this study, we show that these different approaches can produce results which deviate by ∼5 kcal/mol for different species on the potential energy surfaces. This was demonstrated for a simple model of the C-H activation carried out by non-heme iron enzymes. Assessing the limits of CCSD(T) prior to its use as a general benchmark tool is warranted. This was done using higher-order coupled-cluster calculations as well as multiconfigurational second-order perturbation theory (CASPT2), since iron-oxo species present some multireference character. Furthermore, we tested two different implementations of the local coupled-cluster method and compared them to the CCSD(T) results, showing that even though these novel approaches are promising, without further developments they appear not to be suitable for describing two-state reactivity of the system investigated in the current study. Additionally, we implemented and assessed the performance of the hotspot approach for the local unrestricted CCSD(T) scheme which aims at reducing the pair error for systems containing transition metals.

10.
J Chem Theory Comput ; 15(1): 477-489, 2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30513204

RESUMEN

The capability of the multiconfigurational restricted active space approach to identify electronic structure from spectral fingerprints is explored by applying it to iron L-edge X-ray absorption spectroscopy (XAS) of three heme systems that represent the limiting descriptions of iron in the Fe-O2 bond, ferrous and ferric [Fe(P)(ImH)2]0/1+ (P = porphine, ImH = imidazole), and FeII(P). The level of agreement between experimental and simulated spectral shapes is calculated using the cosine similarity, which gives a quantitative and unbiased assignment. Further dimensions in fingerprinting are obtained from the L-edge branching ratio, the integrated absorption intensity, and the edge position. The results show how accurate ab initio simulations of metal L-edge XAS can complement calculations of relative energies to identify unknown species in chemical reactions.

11.
Inorg Chem ; 57(24): 15289-15298, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30500163

RESUMEN

[NiFe] hydrogenases catalyze the reversible conversion of molecular hydrogen to protons and electrons. This seemingly simple reaction has attracted much attention because of the prospective use of H2 as a clean fuel. In this paper, we have studied the full reaction mechanism of this enzyme with various computational methods. Geometries were obtained with combined quantum mechanical and molecular mechanics (QM/MM) calculations. To get more accurate energies and obtain a detailed account of the surroundings, we performed big-QM calculations with 819 atoms in the QM region. Moreover, QM/MM thermodynamic cycle perturbation calculations were performed to obtain free energies. Finally, density matrix renormalisation group complete active space self-consistent field calculations were carried out to study the electronic structures of the various states in the reaction mechanism. Our calculations indicate that the Ni-L state is not involved in the reaction mechanism. Instead, the Ni-C state is reduced by one electron and then the bridging hydride ion is transferred to the sulfur atom of Cys546 as a proton and the two electrons transfer to the Ni ion. This step turned out to be rate-determining with an energy barrier of 58 kJ/mol, which is consistent with the experimental rate of 750 ± 90 s-1 (corresponding to ∼52 kJ/mol). The cleavage of the H-H bond is facile with an energy barrier of 33 kJ/mol, according to our calculations. We also find that the reaction energies are sensitive to the size of the QM system, the basis set, and the density functional theory method, in agreement with previous studies.


Asunto(s)
Teoría Funcional de la Densidad , Hidrogenasas/metabolismo , Teoría Cuántica , Biocatálisis , Desulfovibrio vulgaris/enzimología , Electrones , Hidrógeno/química , Hidrógeno/metabolismo , Hidrogenasas/química , Modelos Moleculares , Estructura Molecular , Protones
12.
Inorg Chem ; 57(23): 14603-14616, 2018 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-30418750

RESUMEN

The iron(II) complexes of two structural isomers of 2-(1 H-imidazol-2-yl)diazine reveal how ligand design can be a successful strategy to control the electronic and magnetic properties of complexes by fine-tuning their ligand field. The two isomers only differ in the position of a single diazinic nitrogen atom, having either a pyrazine (Z) or a pyrimidine (M) moiety. However, [Fe(M)3](ClO4)2 is a spin-crossover complex with a spin transition at 241 K, whereas [Fe(Z)3](ClO4)2 has a stable magnetic behavior between 2 and 300 K. This is corroborated by temperature-dependent Mössbauer spectra showing the presence of a quintet and a singlet state in equilibrium. The temperature-dependent single-crystal X-ray diffraction results relate the spin-crossover observed in [Fe(M)3](ClO4)2 to changes in the bond distances and angles of the coordination sphere of iron(II), hinting at a stronger σ donation of ligand Z in comparison to ligand M. The UV/vis spectra of both complexes are solved by means of the multiconfigurational wave-function-based method CASPT2 and confirm their different spin multiplicities at room temperature, as observed in the Mössbauer spectra. Calculations show larger stabilization of the singlet state in [Fe(Z)3]2+ than in [Fe(M)3]2+, stemming from the slightly stronger ligand field of the former (506 cm-1 in the singlet). This relatively weak effect is indeed capable of changing the spin multiplicity of the complexes and causes the appearance of the spin transition in the M complex.

13.
J Am Chem Soc ; 140(38): 12021-12032, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30169036

RESUMEN

The formation of single-site α-Fe in the CHA zeolite topology is demonstrated. The site is shown to be active in oxygen atom abstraction from N2O to form a highly reactive α-O, capable of methane activation at room temperature to form methanol. The methanol product can subsequently be desorbed by online steaming at 200 °C. For the intermediate steps of the reaction cycle, the evolution of the Fe active site is monitored by UV-vis-NIR and Mössbauer spectroscopy. A B3LYP-DFT model of the α-Fe site in CHA is constructed, and the ligand field transitions are calculated by CASPT2. The model is experimentally substantiated by the preferential formation of α-Fe over other Fe species, the requirement of paired framework aluminum and a MeOH/Fe ratio indicating a mononuclear active site. The simple CHA topology is shown to mitigate the heterogeneity of iron speciation found on other Fe-zeolites, with Fe2O3 being the only identifiable phase other than α-Fe formed in Fe-CHA. The α-Fe site is formed in the d6r composite building unit, which occurs frequently across synthetic and natural zeolites. Finally, through a comparison between α-Fe in Fe-CHA and Fe-*BEA, the topology's 6MR geometry is found to influence the structure, the ligand field, and consequently the spectroscopy of the α-Fe site in a predictable manner. Variations in zeolite topology can thus be used to rationally tune the active site properties.

14.
Phys Chem Chem Phys ; 20(25): 17009-17019, 2018 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-29901049

RESUMEN

In this paper, we present a thorough study of the electronic structures and binding energies of O2 to iron and manganese porphyrins (FeP and MnP), employing a state-of-the-art computational technique known as second-order perturbation theory based on density matrix renormalization group (DMRG-CASPT2). By investigating an extensive list of different binding modes and spin states, we provide a clear and conclusive description of the ground state of MnP-O2, confirming available experimental evidences. Our results show that MnP-O2 favours a side-on quartet structure, with strong charge transfer between MnP and O2. We also calculated the standard binding enthalpies of O2 to different metal porphyrins and showed that an agreement between calculated results and experimental data to within 2 kcal mol-1 can be achieved. Our calculations confirm the experimental observation that the binding of O2 to manganese porphyrin is stronger by around 4-6 kcal mol-1 than to the corresponding ferrous porphyrin.

15.
Chemistry ; 24(40): 10099-10108, 2018 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-29797738

RESUMEN

The effect of the protein environment on the formation and stabilization of an elusive catalytically active polyoxometalate (POM) species, K6 [Hf(α2 -P2 W17 O61 )] (1), is reported. In the co-crystal of hen egg-white lysozyme (HEWL) with 1, the catalytically active monomeric species is observed, originating from the dimeric 1:2 POM form, while it is intrinsically unstable under physiological pH conditions. The protein-assisted dissociation of the dimeric POM was rationalized by means of DFT calculations. The dissociation process is unfavorable in bulk water, but becomes favorable in the protein-POM complex due to the low dielectric response at the protein surface. The crystal structure shows that the monomeric form is stabilized by electrostatic and water-mediated hydrogen bonding interactions with the protein. It interacts at three distinct sites, close to the aspartate-containing hydrolysis sites, demonstrating high selectivity towards peptide bonds containing this residue.

16.
J Chem Theory Comput ; 14(5): 2446-2455, 2018 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-29614218

RESUMEN

In previous work on the performance of multiconfigurational second-order perturbation theory (CASPT2) in describing spin state energetics in first-row transition metal systems [ Pierloot et al. J. Chem. Theory Comput. 2017 , 13 , 537 - 553 ], we showed that standard CASPT2 works well for valence correlation but does not describe the metal semicore (3s3p) correlation effects accurately. This failure is partially responsible for the well-known bias toward high-spin states of CASPT2. In this paper, we expand our previous work and show that this bias could be partly removed with a combined CASPT2/CC approach: using high-quality CASPT2 with extensive correlation-consistent basis sets for valence correlation and low-cost CCSD(T) calculations with minimal basis sets for the metal semicore (3s3p) correlation effects. We demonstrate that this approach is efficient by studying the spin state energetics of a series of iron complexes modeling important intermediates in oxidative catalytic processes in chemistry and biochemistry. On the basis of a comparison with bare CCSD(T) results from this and previous work, the average error of the CASPT2/CC approach is estimated at around 2 kcal mol-1 in favor of high spin states.

17.
Chemistry ; 24(20): 5183-5190, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29068107

RESUMEN

The structures and spin-state energetics of two di-iron(II) complexes based on thiadiazole and oxadiazole ligands in different crystals were studied by using density functional theory and second-order perturbation theory based on the density matrix renormalization group approach (DMRG-CASPT2). When taking into account all different contributions to the relative energy, our theoretical approach is capable of providing results that are in excellent agreement with established experimental data. In all cases, we correctly describe the ground state of the complexes as well as predict their spin-crossover behavior. A comparison between the two complexes in the gas phase and in different crystals shows how the structures change by moving from the gas phase to different crystals and reveals a large impact of the crystal stabilization on the relative spin-state energy. This theoretical work also demonstrates the applicability of the DMRG-CASPT2 approach to quantitatively study the spin-state energetics of multinuclear transition-metal complexes.

18.
Inorg Chem ; 56(17): 10681-10690, 2017 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-28836775

RESUMEN

α-Fe is the precursor of the reactive FeIV═O core responsible for methane oxidation in Fe-containing zeolites. To get more insight into the nature and stability of α-Fe in different zeolites, the binding of Fe(II) at six-membered-ring cation exchange sites (6MR) in ZSM-5, zeolite beta, and ferrierite was investigated using DFT and multireference ab initio methods (CASSCF/CASPT2). CASPT2 ligand field (LF) excitation energies of all sites were compared with the experimental DR-UV-vis spectra reported by Snyder et al. From this comparison it is concluded that the 16000 cm-1 band of α-Fe, observed in all three zeolites, can uniquely be assigned to a high-spin square-planar (SP) Fe(II) located at a 6MR with an Al-Si-Si-Al sequence, where the Al atoms are positioned opposite in the ring and as close to each other as possible. The stability of such conformations is also confirmed by the binding energies obtained from DFT. The bands at 10000 cm-1 in the experimental spectra, assigned to spectator Fe(II), are attributed to six-coordinated trigonal-prismatic Fe(II) species, as calculated for the γ-site in ZSM-5. The entatic effect of the zeolite lattice on the stability of the SP sites was investigated by making use of the unconstrained Fe(II) model complex FeL2 (with L = [Al(OH)4]-). The SP conformer is approximately 2 kcal/mol more stable than the tetrahedral form, indicating that the SP coordination environment of α-Fe is not imposed by the zeolite lattice but rather electronically preferred by Fe(II) in the environment of four O ligands. A significant contribution to the stability of the SP conformer is provided by mixing of the doubly occupied 3dz2 orbital with the higher lying 4s.

19.
Phys Chem Chem Phys ; 19(16): 10590-10601, 2017 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-28397891

RESUMEN

[NiFe] hydrogenases catalyse the reversible conversion of molecular hydrogen to protons and electrons. This seemingly simple reaction has attracted much attention because of the prospective use of H2 as a clean fuel. In this paper, we have studied how H2 binds to the active site of this enzyme. Combined quantum mechanical and molecular mechanics (QM/MM) optimisation was performed to obtain the geometries, using both the TPSS and B3LYP density-functional theory (DFT) methods and considering both the singlet and triplet states of the Ni(ii) ion. To get more accurate energies and obtain a detailed account of the surroundings, we performed calculations with 819 atoms in the QM region. Moreover, coupled-cluster calculations with singles, doubles, and perturbatively treated triples (CCSD(T)) and cumulant-approximated second-order perturbation theory based on the density-matrix renormalisation group (DMRG-CASPT2) were carried out using three models to decide which DFT methods give the most accurate structures and energies. Our calculations show that H2 binding to Ni in the singlet state is the most favourable by at least 47 kJ mol-1. In addition, the TPSS functional gives more accurate energies than B3LYP for this system.


Asunto(s)
Hidrógeno/química , Hidrogenasas/química , Dominio Catalítico , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Modelos Moleculares , Níquel/química , Teoría Cuántica , Termodinámica
20.
J Chem Theory Comput ; 13(2): 537-553, 2017 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-28005368

RESUMEN

This paper presents an in-depth study of the performance of multiconfigurational second-order perturbation theory (CASPT2, NEVPT2) in describing spin state energetics in first-row transition metal (TM) systems, including bare TM ions, TM ions in a field of point charges (TM/PC), and an extensive series of TM complexes, where the main focus lies on the (3s3p) correlation contribution to the relative energies of different spin states. To the best of our knowledge, this is the first systematic NEVPT2 investigation of TM spin state energetics. CASPT2 has been employed in several previous studies but was regularly found to be biased toward high spin states. The bias was attributed to a too low value of the so-called IPEA shift ϵ, an empirical correction in the CASPT2 zeroth-order Hamiltonian with a standard value of 0.25 hartree. Based on comparisons with experiment (TM ions) and calculations with the multireference configuration interaction (TM ions and TM/PC systems) and coupled-cluster (TM complexes) methods, we demonstrate in this work that standard CASPT2 works well for valence correlation and that its bias toward high-spin states is caused by an erratic description of (3s3p) correlation effects. The latter problem only occurs for spin transitions involving a ligand field (de)excitation, not in bare TM ions. At the same time the (3s3p) correlation contribution also becomes strongly ϵ dependent. The error can be reduced by increasing ϵ but only at the expense of deteriorating the CASPT2 description of valence correlation in the TM complexes. The alternative NEVPT2 method works well for bare TM and TM/PC systems, but its results for the TM complexes are disappointing, with large errors both for the valence and (3s3p) correlation contributions to the relative energies of different spin states.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...