Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Biol Open ; 13(9)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39133170

RESUMEN

The cephalopod eye lens is unique because it has evolved as a compound structure with two physiologically distinct segments. However, the detailed ultrastructure of this lens and precise optical role of each segment are far from clear. To help elucidate structure-function relationships in the cephalopod lens, we conducted multiple structural investigations on squid. Synchrotron x-ray scattering and transmission electron microscopy disclose that an extensive network of structural features that resemble cell membrane complexes form a substantial component of both anterior and posterior lens segments. Optically, the segments are distinct, however, and Talbot interferometry indicates that the posterior segment possesses a noticeably higher refractive index gradient. We propose that the hitherto unrecognised network of membrane structures in the cephalopod lens has evolved to act as an essential conduit for the internal passage of ions and other metabolic agents through what is otherwise a highly dense structure owing to a very high protein concentration.


Asunto(s)
Cefalópodos , Cristalino , Animales , Cristalino/ultraestructura , Cristalino/fisiología , Cefalópodos/fisiología , Difracción de Rayos X , Membrana Celular/ultraestructura , Membrana Celular/metabolismo , Microscopía Electrónica de Transmisión , Decapodiformes/fisiología
2.
Vision (Basel) ; 8(3)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39189183

RESUMEN

Purpose: With age, there is an anterior shift of the ciliary body in the eye, which alters the angle of zonular insertion in older eyes compared with younger eyes. This study aims to simulate lens accommodation with different zonular angles to consider the influence of zonular position on lens accommodative capacity. Methods: Models were constructed based on lenses aged 11, 29, and 45 years using a 2D axisymmetric structure that included a capsule, cortex, nucleus, and zonular fibers. The different zonular fibers were simulated by changing the position of the point where the zonular fibers connect to the ciliary body. The effect of the different zonular fiber insertion angles on the model shape and optical power was analyzed. Results: The models show that smaller angles made by zonular fibers to the surface of the lens lead to larger optical power changes with simulated stretching. When the models were stretched, and when varying the zonule angles, the optical power of the 11-, 29-, and 45-year-old models changed up to 0.17 D, 0.24 D, and 0.30 D, respectively. The effect of zonular angles on the anterior radius of curvature of the anterior surface varied by 0.29 mm, 0.23 mm, and 0.25 mm for the 11-, 29-, and 45-year-old models, respectively. Conclusions: Larger zonular fiber insertion angles cause smaller deformation and less accommodative change, while parallel zonules induce the largest change in lens shape.

3.
Nanomaterials (Basel) ; 14(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38998738

RESUMEN

Disulfiram (DS) has been shown to have potent anti-cancer activity; however, it is also characterised by its low water solubility and rapid metabolism in vivo. Biodegradable polylactic-co-glycolic acid (PLGA) polymers have been frequently employed in the manufacturing of PLGA nano-carrier drug delivery systems. Thus, to develop DS-loaded PLGA nanoparticles (NPs) capable of overcoming DS's limitations, two methodologies were used to formulate the NPs: direct nanoprecipitation (DNP) and single emulsion/solvent evaporation (SE), followed by particle size reduction. The DNP method was demonstrated to produce NPs of superior characteristics in terms of size (151.3 nm), PDI (0.083), charge (-37.9 mV), and loading efficiency (65.3%). Consequently, NPs consisting of PLGA and encapsulated DS coated with mPEG2k-PLGA at adjustable ratios were prepared using the DNP method. Formulations were then characterised, and their stability in horse serum was assessed. Results revealed the PEGylated DS-loaded PLGA nano-carriers to be more efficient; hence, in-vitro studies testing these formulations were subsequently performed using two distinct breast cancer cell lines, showing great potential to significantly enhance cancer therapy.

4.
Sci Rep ; 14(1): 5896, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467700

RESUMEN

How the human eye focuses for near; i.e. accommodates, is still being evaluated after more than 165 years. The mechanism of accommodation is essential for understanding the etiology and potential treatments for myopia, glaucoma and presbyopia. Presbyopia affects 100% of the population in the fifth decade of life. The lens is encased in a semi-elastic capsule with attached ligaments called zonules that mediate ciliary muscle forces to alter lens shape. The zonules are attached at the lens capsule equator. The fundamental issue is whether during accommodation all the zonules relax causing the central and peripheral lens surfaces to steepen, or the equatorial zonules are under increased tension while the anterior and posterior zonules relax causing the lens surface to peripherally flatten and centrally steepen while maintaining lens stability. Here we show with a balloon capsule zonular force model that increased equatorial zonular tension with relaxation of the anterior and posterior zonules replicates the topographical changes observed during in vivo rhesus and human accommodation of the lens capsule without lens stroma. The zonular forces required to simulate lens capsule configuration during in vivo accommodation are inconsistent with the general belief that all the zonules relax during accommodation.


Asunto(s)
Cápsula del Cristalino , Cristalino , Presbiopía , Animales , Humanos , Acomodación Ocular , Cristalino/fisiología , Macaca mulatta
5.
Exp Eye Res ; 241: 109858, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467176

RESUMEN

The eye lens is responsible for focusing objects at various distances onto the retina and its refractive power is determined by its surface curvature as well as its internal gradient refractive index (GRIN). The lens continues to grow with age resulting in changes to the shape and to the GRIN profile. The present study aims to investigate how the ageing process may influence lens optical development. Murine lenses of accelerated senescence-prone strain (SAMP8) aged from 4 to 50 weeks; senescence-resistant strain (SAMR1) aged from 5 to 52 weeks as well as AKR strain (served as control) aged from 6 to 70 weeks were measured using the X-ray interferometer at the SPring-8 synchrotron Japan within three consecutive years from 2020 to 2022. Three dimensional distributions of the lens GRIN were reconstructed using the measured data and the lens shapes were determined using image segmentation in MatLab. Variations in the parameters describing the lens shape and the GRIN profile with age were compared amongst three mouse strains. With advancing age, both the lens anterior and posterior surface flattens and the lens sagittal thickness increase in all three mouse strains (Anterior radius of curvature increase at 0.008 mm/week, 0.007 mm/week and 0.002 mm/week while posterior radius of curvature increase at 0.002 mm/week, 0.007 mm/week and 0.003 mm/week respectively in AKR, SAMP8 and SAMR1 lenses). Compared with the AKR strain, the SAMP8 samples demonstrate a higher rate of increase in the posterior curvature radius (0.007 mm/week) and the thickness (0.015 mm/week), whilst the SAMR1 samples show slower increases in the anterior curvature radius (0.002 mm/week) and its thickness (0.013 mm/week). There are similar age-related trends in GRIN shape in the radial direction (in all three types of murine lenses nr2 and nr6 increase with age while nr4 decrease with age consistently) but not in the axial direction amongst three mouse strains (nz1 of AKR lens decrease while of SAMP8 and SAMR1 increase with age; nz2 of all three models increase with age; nz3 of AKR lens increase while of SAMP8 and SAMR1 decrease with age). The ageing process can influence the speed of lens shape change and affect the GRIN profile mainly in the axial direction, contributing to an accelerated decline rate of the optical power in the senescence-prone strain (3.5 D/week compared to 2.3 D/week in the AKR control model) but a retardatory decrease in the senescence-resistant strain (2.1 D/week compared to the 2.3D/week in the AKR control model).


Asunto(s)
Envejecimiento , Cristalino , Ratones , Animales , Japón
6.
Ann Biomed Eng ; 52(8): 1982-1990, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38503945

RESUMEN

The process of lens shape change in the eye to alter focussing (accommodation) is still not fully understood. Modelling approaches have been used to complement experimental findings in order to determine how constituents in the accommodative process influence the shape change of the lens. An unexplored factor in modelling is the role of the modelling software on the results of simulated shape change. Finite element models were constructed in both Abaqus and Ansys software using biological parameters from measurements of shape and refractive index of two 35-year-old lenses. The effect of zonular insertion on simulated shape change was tested on both 35-year-old lens models and with both types of software. Comparative analysis of shape change, optical power, and stress distributions showed that lens shape and zonular insertion positions affect the results of simulated shape change and that Abaqus and Ansys show differences in their respective models. The effect of the software package used needs to be taken into account when constructing finite element models and deriving conclusions.


Asunto(s)
Análisis de Elementos Finitos , Cristalino , Modelos Biológicos , Cristalino/fisiología , Cristalino/anatomía & histología , Humanos , Simulación por Computador , Acomodación Ocular/fisiología , Adulto , Programas Informáticos
7.
Ophthalmic Physiol Opt ; 44(1): 182-190, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38009663

RESUMEN

PURPOSE: To analyse and compare image acuity for different refractive errors generated by either altering axial length or corneal curvature and using three human eye models with two pupil sizes. METHODS: Three different eye models, Liou-Brennan, Goncharov and Navarro, were used. Simulations were made (using Ansys Zemax OpticStudio 22.3) for real pupil sizes of 3 and 6 mm with refractive errors ranging from -2 to +2 D in 0.25 D increments. Refractive errors were simulated by varying axial length or corneal curvature. Root mean square (RMS) values were used to determine image acuity. RESULTS: For the 3-mm pupil, all models gave similar results, with the Navarro model having slightly higher RMS values for the emmetropic eye. For the 6-mm pupil, the Liou-Brennan and Goncharov eye models gave similar results, with RMS values lower than for the Navarro eye model. The highest RMS value was visible in the axial length-induced refractive errors. Refractive errors generated by altering corneal curvature give smaller RMS values than those generated by altering axial length. The axial length and corneal radius simulations indicate a wide spread of results for myopic, hyperopic and emmetropic eyes. There are multiple outcomes that give the same refractive error, even within a single-eye model. The axial length/corneal curvature ratio showed a higher ratio for myopes than hyperopes for every model. CONCLUSIONS: The influence of refractive error on image acuity varied depending on the simulation method of refractive error and the model used. The origins of refractive error and the influence it has on image acuity need further investigation. As models become more sophisticated, personalised and biologically relevant, they will better represent the image acuity of the eye for varying refractive errors, ethnicities, ages and pupil sizes.


Asunto(s)
Hiperopía , Miopía , Errores de Refracción , Humanos , Miopía/diagnóstico , Córnea , Emetropía
8.
Eye Vis (Lond) ; 10(1): 46, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38037146

RESUMEN

BACKGROUND: The shape and microstructure of the human crystalline lens alter with ageing, and this has an effect on the optical properties of the eye. The aim of this study was to characterise the age-related differences in the morphology and transparency of the eye lenses of healthy subjects through the optical signal discontinuity (OSD) zones in optical coherence tomography (OCT) images. We also investigated the association of those changes with the optical quality of the eye and visual function. METHODS: OCT images of the anterior segment of 49 eyes of subjects (9-78 years) were acquired, and the OSD zones (nucleus, C1-C4 cortical zones) were identified. Central thickness, curvature and optical density were measured. The eye's optical quality was evaluated by the objective scatter index (OSI). Contrast sensitivity and visual acuity tests were performed. The correlation between extracted parameters and age was assessed. RESULTS: The increase in lens thickness with age was dominated by the thickening of the cortical zone C3 (0.0146 mm/year). The curvature radii of the anterior lens surface and both anterior and posterior nucleo-cortical interfaces decreased with age (- 0.053 mm/year, - 0.013 mm/year and - 0.006 mm/year, respectively), and no change was observed for the posterior lens radius. OCT-based densitometry revealed significant correlations with age for all zones except for C1ß, and the highest increase in density was in the C2-C4 zones (R = 0.45, 0.74, 0.56, respectively, P < 0.001). Increase in OSI was associated with the degradation of visual function. CONCLUSIONS: OCT enables the identification of OSD zones of the crystalline lens. The most significant age-related changes occur in the C3 zone as it thickens with age at a faster rate and becomes more opaque than other OSD zones. The changes are associated with optical quality deterioration and reduction of visual performance. These findings contribute to a better understanding of the structure-function relationship of the ageing lens and offer insights into both pathological and aging alterations.

9.
Exp Eye Res ; 237: 109709, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37923162

RESUMEN

To determine the effect of zonular forces on lens capsule topography, a finite element (FE) analyses of lens capsules with no lens stroma and constant and variable thickness with anterior capsulotomies of 1.5 mm-6.5 mm were evaluated when subjected to equatorial (Ez), anterior (Az) and posterior (Pz) zonular forces. The lens capsule was considered in the unaccommodated state when the total initial zonular force was 0.00075 N or 0.3 N. From the total 0.00075 N zonular force, the Ez force was increased in 0.000125 N steps for a maximum force of 0.03 N and simultaneously the Az plus Pz force was reduced in 0.000125 N steps to zero. In addition, the force of all the zonules was reduced from 0.00075 N and separately from 0.3 N in 0.000125 N steps to zero. Only when Ez force was increased as Az and Pz force was reduced did the capsule topography simulate in vivo observations with the posterior capsule pole bowing posteriorly. The posterior bowing was directly related to Ez force and capsulotomy size. Whether the total force of all the zonules in the unaccommodated state was 0.00075 N or 0.3 N and reduced in steps to zero, the lens capsule topography did not emulate the in vivo observations. The FE analysis demonstrated that Ez tension increases while the Az and Pz tension decreases and that all the zonules do not relax during ciliary muscle contraction.


Asunto(s)
Cápsula del Cristalino , Cristalino , Análisis de Elementos Finitos , Cristalino/fisiología , Cápsula del Cristalino/fisiología , Cuerpo Ciliar , Músculo Liso
10.
Comput Methods Programs Biomed ; 242: 107815, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37729794

RESUMEN

PURPOSE: To explore the synergistic function of the ligaments in eye, the zonular fibres, that mediate change in eye lens shape to allow for focussing over different distances. METHODS: A set of 3D Finite Element models of the anterior eye together with a custom developed pre-stress modelling approach was proposed to simulate vision for distant objects (the unaccommodated state) to vision for near objects (accommodation). One of the five zonular groups was cut off in sequence creating five models with different zonular arrangements, the contribution of each zonular group was analysed by comparing results of each specific zonular-cut model with those from the all-zonules model in terms of lens shape and zonular tensions. RESULTS: In the all-zonular model, the anterior and equatorial zonules carry the highest tensions. In the anterior zonular-cut model, the equatorial zonular tension increases while the posterior zonular tension decreases, resulting in an increase in the change in Central Optical Power (COP). In the equatorial zonular-cut model, both the anterior and posterior zonular tensions increase, causing a decreasing change in COP. The change in COP decreases only slightly in the other models. For vitreous zonular-cut models, little change was seen in either the zonular tension or the change in COP. CONCLUSIONS: The anterior and the equatorial zonular fibres have the major influence on the change in lens optical power, with the anterior zonules having a negative effect and the equatorial zonules contributing a positive effect. The contribution to variations in optical power by the equatorial zonules is much larger than by the posterior zonules.


Asunto(s)
Cuerpo Ciliar , Cristalino , Acomodación Ocular , Ligamentos
11.
Sci Total Environ ; 902: 165957, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37543314

RESUMEN

Recent studies apparently finding deleterious effects of radiation exposure on cataract formation in birds and voles living near Chernobyl represent a major challenge to current radiation protection regulations. This study conducted an integrated assessment of radiation exposure on cataractogenesis using the most advanced technologies available to assess the cataract status of lenses extracted from fish caught at both Chernobyl in Ukraine and Fukushima in Japan. It was hypothesised that these novel data would reveal positive correlations between radiation dose and early indicators of cataract formation. The structure, function and optical properties of lenses were analysed from atomic to millimetre length scales. We measured the short-range order of the lens crystallin proteins using Small Angle X-Ray Scattering (SAXS) at both the SPring-8 and DIAMOND synchrotrons, the profile of the graded refractive index generated by these proteins, the epithelial cell density and organisation and finally the focal length of each lens. The results showed no evidence of a difference between the focal length, the epithelial cell densities, the refractive indices, the interference functions and the short-range order of crystallin proteins (X-ray diffraction patterns) in lens from fish exposed to different radiation doses. It could be argued that animals in the natural environment which developed cataract would be more likely, for example, to suffer predation leading to survivor bias. But the cross-length scale study presented here, by evaluating small scale molecular and cellular changes in the lens (pre-cataract formation) significantly mitigates against this issue.


Asunto(s)
Catarata , Accidente Nuclear de Chernóbil , Cristalinas , Animales , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Catarata/etiología , Catarata/veterinaria , Catarata/metabolismo
12.
Nat Rev Rheumatol ; 19(7): 446-459, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37308659

RESUMEN

Giant cell arteritis (GCA) and polymyalgia rheumatica (PMR) are closely related conditions characterized by systemic inflammation, a predominant IL-6 signature, an excellent response to glucocorticoids, a tendency to a chronic and relapsing course, and older age of the affected population. This Review highlights the emerging view that these diseases should be approached as linked conditions, unified under the term GCA-PMR spectrum disease (GPSD). In addition, GCA and PMR should be seen as non-monolithic conditions, with different risks of developing acute ischaemic complications and chronic vascular and tissue damage, different responses to available therapies and disparate relapse rates. A comprehensive stratification strategy for GPSD, guided by clinical findings, imaging and laboratory data, facilitates appropriate therapy and cost-effective use of health-economic resources. Patients presenting with predominant cranial symptoms and vascular involvement, who usually have a borderline elevation of inflammatory markers, are at an increased risk of sight loss in early disease but have fewer relapses in the long term, whereas the opposite is observed in patients with predominant large-vessel vasculitis. How the involvement of peripheral joint structures affects disease outcomes remains uncertain and understudied. In the future, all cases of new-onset GPSD should undergo early disease stratification, with their management adapted accordingly.


Asunto(s)
Arteritis de Células Gigantes , Polimialgia Reumática , Humanos , Arteritis de Células Gigantes/tratamiento farmacológico , Arteritis de Células Gigantes/complicaciones , Polimialgia Reumática/tratamiento farmacológico , Polimialgia Reumática/complicaciones , Glucocorticoides/uso terapéutico , Diagnóstico por Imagen
13.
Int J Med Robot ; 19(4): e2524, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37132166

RESUMEN

In recent decades, a number of surgical systems have been developed and are applied for a growing variety of surgeries. This review will consider the significant challenges of robotic surgery for the eye. These challenges take into account the different eye diseases, available technologies, and costs in different surgical systems for the eye. The conditions of a suitable controller will be discussed with consideration of relevant control engineering concepts. Comparison is made between the different characteristics of surgical robots for the eye. In this review, some comparisons will be made in eye surgical robots, control algorithms, sensors in surgical robots, communication protocols, and actuators.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Procedimientos Quirúrgicos Robotizados/métodos , Análisis Costo-Beneficio , Procedimientos Quirúrgicos Oftalmológicos/métodos
14.
Comput Biol Med ; 160: 106972, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120989

RESUMEN

BACKGROUND: Current treatment of cataract widely used in clinics is by removal of the opacified content from the lens capsule which is followed by insertion of an artificial intraocular lens (IOL). The IOL needs to remain stabilized in the capsular bag for the eye to achieve desired optical quality. The present study aims to investigate how different design parameters of the IOL can influence the axial and rotational stabilities of IOLs using Finite Element Analysis. METHODS: Eight designs of IOL with variations in types of optics surface, types of haptics and haptic angulation were constructed using parameters obtained from an online IOL databank (IOLs.eu). Each IOL was subjected to compressional simulations both by two clamps and by a collapsed natural lens capsule with an anterior rhexis. Comparisons were made between the two scenarios on axial displacement, rotation, and distribution of stresses. RESULTS: The clamps compression method set out by ISO does not always produce the same outcome as the in-the-bag analysis. The open-loop IOLs show better axial stability while the closed-loop IOLs show better rotational stability when compressed by two clamps. Simulations of IOL in the capsular bag only demonstrate better rotational stability for closed-loop designs. CONCLUSIONS: The rotational stability of an IOL is largely dependent on its haptic design whilst the axial stability is affected by the appearance of the rhexis to the anterior capsule which has a major influence on designs with a haptic angulation.


Asunto(s)
Capsulorrexis , Lentes Intraoculares , Capsulorrexis/métodos , Análisis de Elementos Finitos , Implantación de Lentes Intraoculares/métodos , Diseño de Prótesis , Humanos
15.
Invest Ophthalmol Vis Sci ; 64(4): 24, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-37079314

RESUMEN

Purpose: The purpose of this study was to utilize in vivo magnetic resonance imaging (MRI) and optical modeling to investigate how changes in water transport, lens curvature, and gradient refractive index (GRIN) alter the power of the mouse lens as a function of age. Methods: Lenses of male C57BL/6 wild-type mice aged between 3 weeks and 12 months (N = 4 mice per age group) were imaged using a 7T MRI scanner. Measurements of lens shape and the distribution of T2 (water-bound protein ratios) and T1 (free water content) values were extracted from MRI images. T2 values were converted into the refractive index (n) using an age-corrected calibration equation to calculate the GRIN at different ages. GRIN maps and shape parameters were inputted into an optical model to determine ageing effects on lens power and spherical aberration. Results: The mouse lens showed two growth phases. From 3 weeks to 3 months, T2 decreased, GRIN increased, and T1 decreased. This was accompanied by increased lens thickness, volume, and surface radii of curvatures. The refractive power of the lens also increased significantly, and a negative spherical aberration was developed and maintained. Between 6 and 12 months of age, all physiological, geometrical, and optical parameters remained constant, although the lens continued to grow. Conclusions: In the first 3 months, the mouse lens power increased as a result of changes in shape and in the GRIN, the latter driven by the decreased water content of the lens nucleus. Further research into the mechanisms regulating this decrease in mouse lens water could improve our understanding of how lens power changes during emmetropization in the developing human lens.


Asunto(s)
Cristalino , Refracción Ocular , Masculino , Humanos , Animales , Ratones , Recién Nacido , Tomografía de Coherencia Óptica/métodos , Ratones Endogámicos C57BL , Cristalino/fisiología , Imagen por Resonancia Magnética
16.
Bioengineering (Basel) ; 10(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36829636

RESUMEN

The young eye has an accommodative ability involving lens shape changes to focus over different distances. This function gradually decreases with age, resulting in presbyopia. Greater insights into the mechanical properties of anterior eye structures can improve understanding of the causes of presbyopia. The present study aims to develop a multi-axis stretching device for evaluating the mechanical properties of the intact eye lens. A stretching device integrating the mechanical stretcher, motor, torque sensor and data transmission mechanism was designed and developed by 3D printing. The mechanical stretcher can convert rotation into radial movement, both at constant speeds, according to the spiral of Archimedes. The loading unit equipped with eight jaws can hold the eye sample tightly. The developed device was validated with a spring of known constant and was further tested with anterior porcine eye segments. The validation experiment using the spring resulted in stiffness values close to the theoretical spring constant. Findings from measurements with porcine eye samples indicated that the measured forces are within the ranges reported in the literature. The developed multi-axis stretching device has good repeatability during experiments with similar settings and can be reliably used for mechanical evaluations of the intact eye lens.

17.
Pharmaceutics ; 16(1)2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-38258076

RESUMEN

Zinc diethyldithiocarbamate (Zn (DDC)2), a disulfiram metabolite (anti-alcoholism drug), has shown a strong anti-cancer activity in vitro. However, its application was limited by its low aqueous solubility and rapid metabolism. In this study, the solubility enhancement of Zn (DDC)2 is investigated by forming inclusion complexes with cyclodextrins. The inclusion complexes were prepared using two different types of beta-cyclodextrins, SBE-CD and HP-CD. Phase solubility diagrams for the resulting solutions were assessed; subsequently, the solutions were freeze-dried for further characterisation studies using DSC, TGA, XRD, and FTIR. The cytotoxic activity of the produced inclusion complexes was evaluated on human lung carcinoma cells using the MTT assay. The solubility of Zn (DDC)2 increased significantly upon adding beta-cyclodextrins, reaching approximately 4 mg/mL for 20% w/w CD solutions. The phase solubility diagram of Zn (DDC)2 was of the Ap-type according to the Higuchi and Connors model. Characterisation studies confirmed the inclusion of the amorphous drug in the CD-Zn (DDC)2 complexes. The cytotoxicity of Zn (DDC)2 was enhanced 10-fold by the inclusion complexes compared to the free drug. Overall, the resulting CD-Zn (DDC)2 inclusion complexes have a potential for treatment against lung cancer.

18.
Invest Ophthalmol Vis Sci ; 63(5): 15, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35575904

RESUMEN

Purpose: To investigate how cataract-linked mutations affect the gradient refractive index (GRIN) and lens opacification in mouse lenses and whether there is any effect on the optics of the lens from treatment with an oxysterol compound. Methods: A total of 35 mice including wild-type and knock-in mutants (Cryaa-R49C and Cryab-R120G) were used in these experiments: 26 mice were treated with topical VP1-001, an oxysterol, in one eye and vehicle in the other, and nine mice were untreated controls. Slit lamp biomicroscopy was used to analyze the lens in live animals and to provide apparent cataract grades. Refractive index in the lenses of 64 unfixed whole mouse eyes was calculated from measurements with X-ray phase tomography based on X-ray Talbot interferometry with a synchrotron radiation source. Results: Heterozygous Cryaa-R49C lenses had slightly irregularly shaped contours in the center of the GRIN and distinct disturbances of the gradient index at the anterior and posterior poles. Contours near the lens surface were denser in homozygous Cryab-R120G lenses. Treatment with topical VP1-001, an oxysterol, showed an improvement in refractive index profiles in 61% of lenses and this was supported by a reduction in apparent lens opacity grade by 1.0 in 46% of live mice. Conclusions: These results indicate that α-crystallin mutations alter the refractive index gradient of mouse lenses in distinct ways and suggest that topical treatment with VP1-001 may improve lens transparency and refractive index contours in some lenses with mutations.


Asunto(s)
Catarata , Cristalinas , Cristalino , Oxiesteroles , Animales , Catarata/genética , Cristalinas/genética , Modelos Animales de Enfermedad , Cristalino/metabolismo , Cristalino/fisiología , Ratones , Oxiesteroles/farmacología
19.
Invest Ophthalmol Vis Sci ; 63(1): 2, 2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34978559

RESUMEN

Purpose: Our studies in mouse eye lenses demonstrate that ephrin-A5 and EphA2 are needed for normal epithelial cells and lens transparency. We sought to determine whether EphA2 and ephrin-A5 are important for lens morphometrics, nucleus formation, and refractive index. Methods: We performed tissue morphometric measurements, electron microscopy, Western blots, and interferometric measurements using an X-ray synchrotron beam source to measure the gradient of refractive index (GRIN) to compare mouse lenses with genetic disruption of EphA2 or ephrin-A5. Results: Morphometric analysis revealed that although there is no change in the overall lens volume, there is a change in lens shape in both EphA2-/- lenses and ephrin-A5-/- lenses. Surprisingly, EphA2-/- lenses had small and soft lens nuclei different from hard lens nuclei of control lenses. SEM images revealed changes in cell morphology of EphA2-/- fiber cells close to the center of the lens. Inner EphA2-/- lens fibers had more pronounced tongue-and-groove interdigitations and formed globular membrane morphology only in the deepest layers of the lens nucleus. We did not observe nuclear defects in ephrin-A5-/- lenses. There was an overall decrease in magnitude of refractive index across EphA2-/- lenses, which is most pronounced in the nucleus. Conclusions: This work reveals that Eph-ephrin signaling plays a role in fiber cell maturation, nuclear compaction, and lens shape. Loss of EphA2 disrupts the nuclear compaction resulting in a small lens nucleus. Our data suggest that Eph-ephrin signaling may be required for fiber cell membrane reorganization and compaction and for establishing a normal GRIN.


Asunto(s)
Núcleo del Cristalino/crecimiento & desarrollo , Receptor EphA2/fisiología , Refracción Ocular/fisiología , Animales , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Efrina-A5/fisiología , Técnicas de Genotipaje , Interferometría , Núcleo del Cristalino/metabolismo , Núcleo del Cristalino/ultraestructura , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica de Rastreo , Forma de los Orgánulos/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/fisiología , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...