Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biol Open ; 13(9)2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39133170

RESUMEN

The cephalopod eye lens is unique because it has evolved as a compound structure with two physiologically distinct segments. However, the detailed ultrastructure of this lens and precise optical role of each segment are far from clear. To help elucidate structure-function relationships in the cephalopod lens, we conducted multiple structural investigations on squid. Synchrotron x-ray scattering and transmission electron microscopy disclose that an extensive network of structural features that resemble cell membrane complexes form a substantial component of both anterior and posterior lens segments. Optically, the segments are distinct, however, and Talbot interferometry indicates that the posterior segment possesses a noticeably higher refractive index gradient. We propose that the hitherto unrecognised network of membrane structures in the cephalopod lens has evolved to act as an essential conduit for the internal passage of ions and other metabolic agents through what is otherwise a highly dense structure owing to a very high protein concentration.


Asunto(s)
Cefalópodos , Cristalino , Animales , Cristalino/ultraestructura , Cristalino/fisiología , Cefalópodos/fisiología , Difracción de Rayos X , Membrana Celular/ultraestructura , Membrana Celular/metabolismo , Microscopía Electrónica de Transmisión , Decapodiformes/fisiología
2.
Exp Eye Res ; 241: 109858, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38467176

RESUMEN

The eye lens is responsible for focusing objects at various distances onto the retina and its refractive power is determined by its surface curvature as well as its internal gradient refractive index (GRIN). The lens continues to grow with age resulting in changes to the shape and to the GRIN profile. The present study aims to investigate how the ageing process may influence lens optical development. Murine lenses of accelerated senescence-prone strain (SAMP8) aged from 4 to 50 weeks; senescence-resistant strain (SAMR1) aged from 5 to 52 weeks as well as AKR strain (served as control) aged from 6 to 70 weeks were measured using the X-ray interferometer at the SPring-8 synchrotron Japan within three consecutive years from 2020 to 2022. Three dimensional distributions of the lens GRIN were reconstructed using the measured data and the lens shapes were determined using image segmentation in MatLab. Variations in the parameters describing the lens shape and the GRIN profile with age were compared amongst three mouse strains. With advancing age, both the lens anterior and posterior surface flattens and the lens sagittal thickness increase in all three mouse strains (Anterior radius of curvature increase at 0.008 mm/week, 0.007 mm/week and 0.002 mm/week while posterior radius of curvature increase at 0.002 mm/week, 0.007 mm/week and 0.003 mm/week respectively in AKR, SAMP8 and SAMR1 lenses). Compared with the AKR strain, the SAMP8 samples demonstrate a higher rate of increase in the posterior curvature radius (0.007 mm/week) and the thickness (0.015 mm/week), whilst the SAMR1 samples show slower increases in the anterior curvature radius (0.002 mm/week) and its thickness (0.013 mm/week). There are similar age-related trends in GRIN shape in the radial direction (in all three types of murine lenses nr2 and nr6 increase with age while nr4 decrease with age consistently) but not in the axial direction amongst three mouse strains (nz1 of AKR lens decrease while of SAMP8 and SAMR1 increase with age; nz2 of all three models increase with age; nz3 of AKR lens increase while of SAMP8 and SAMR1 decrease with age). The ageing process can influence the speed of lens shape change and affect the GRIN profile mainly in the axial direction, contributing to an accelerated decline rate of the optical power in the senescence-prone strain (3.5 D/week compared to 2.3 D/week in the AKR control model) but a retardatory decrease in the senescence-resistant strain (2.1 D/week compared to the 2.3D/week in the AKR control model).


Asunto(s)
Envejecimiento , Cristalino , Ratones , Animales , Japón
3.
Sci Rep ; 14(1): 5896, 2024 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-38467700

RESUMEN

How the human eye focuses for near; i.e. accommodates, is still being evaluated after more than 165 years. The mechanism of accommodation is essential for understanding the etiology and potential treatments for myopia, glaucoma and presbyopia. Presbyopia affects 100% of the population in the fifth decade of life. The lens is encased in a semi-elastic capsule with attached ligaments called zonules that mediate ciliary muscle forces to alter lens shape. The zonules are attached at the lens capsule equator. The fundamental issue is whether during accommodation all the zonules relax causing the central and peripheral lens surfaces to steepen, or the equatorial zonules are under increased tension while the anterior and posterior zonules relax causing the lens surface to peripherally flatten and centrally steepen while maintaining lens stability. Here we show with a balloon capsule zonular force model that increased equatorial zonular tension with relaxation of the anterior and posterior zonules replicates the topographical changes observed during in vivo rhesus and human accommodation of the lens capsule without lens stroma. The zonular forces required to simulate lens capsule configuration during in vivo accommodation are inconsistent with the general belief that all the zonules relax during accommodation.


Asunto(s)
Cápsula del Cristalino , Cristalino , Presbiopía , Animales , Humanos , Acomodación Ocular , Cristalino/fisiología , Macaca mulatta
4.
Ann Biomed Eng ; 52(8): 1982-1990, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38503945

RESUMEN

The process of lens shape change in the eye to alter focussing (accommodation) is still not fully understood. Modelling approaches have been used to complement experimental findings in order to determine how constituents in the accommodative process influence the shape change of the lens. An unexplored factor in modelling is the role of the modelling software on the results of simulated shape change. Finite element models were constructed in both Abaqus and Ansys software using biological parameters from measurements of shape and refractive index of two 35-year-old lenses. The effect of zonular insertion on simulated shape change was tested on both 35-year-old lens models and with both types of software. Comparative analysis of shape change, optical power, and stress distributions showed that lens shape and zonular insertion positions affect the results of simulated shape change and that Abaqus and Ansys show differences in their respective models. The effect of the software package used needs to be taken into account when constructing finite element models and deriving conclusions.


Asunto(s)
Análisis de Elementos Finitos , Cristalino , Modelos Biológicos , Cristalino/fisiología , Cristalino/anatomía & histología , Humanos , Simulación por Computador , Acomodación Ocular/fisiología , Adulto , Programas Informáticos
5.
Exp Eye Res ; 237: 109709, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37923162

RESUMEN

To determine the effect of zonular forces on lens capsule topography, a finite element (FE) analyses of lens capsules with no lens stroma and constant and variable thickness with anterior capsulotomies of 1.5 mm-6.5 mm were evaluated when subjected to equatorial (Ez), anterior (Az) and posterior (Pz) zonular forces. The lens capsule was considered in the unaccommodated state when the total initial zonular force was 0.00075 N or 0.3 N. From the total 0.00075 N zonular force, the Ez force was increased in 0.000125 N steps for a maximum force of 0.03 N and simultaneously the Az plus Pz force was reduced in 0.000125 N steps to zero. In addition, the force of all the zonules was reduced from 0.00075 N and separately from 0.3 N in 0.000125 N steps to zero. Only when Ez force was increased as Az and Pz force was reduced did the capsule topography simulate in vivo observations with the posterior capsule pole bowing posteriorly. The posterior bowing was directly related to Ez force and capsulotomy size. Whether the total force of all the zonules in the unaccommodated state was 0.00075 N or 0.3 N and reduced in steps to zero, the lens capsule topography did not emulate the in vivo observations. The FE analysis demonstrated that Ez tension increases while the Az and Pz tension decreases and that all the zonules do not relax during ciliary muscle contraction.


Asunto(s)
Cápsula del Cristalino , Cristalino , Análisis de Elementos Finitos , Cristalino/fisiología , Cápsula del Cristalino/fisiología , Cuerpo Ciliar , Músculo Liso
6.
Comput Methods Programs Biomed ; 242: 107815, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37729794

RESUMEN

PURPOSE: To explore the synergistic function of the ligaments in eye, the zonular fibres, that mediate change in eye lens shape to allow for focussing over different distances. METHODS: A set of 3D Finite Element models of the anterior eye together with a custom developed pre-stress modelling approach was proposed to simulate vision for distant objects (the unaccommodated state) to vision for near objects (accommodation). One of the five zonular groups was cut off in sequence creating five models with different zonular arrangements, the contribution of each zonular group was analysed by comparing results of each specific zonular-cut model with those from the all-zonules model in terms of lens shape and zonular tensions. RESULTS: In the all-zonular model, the anterior and equatorial zonules carry the highest tensions. In the anterior zonular-cut model, the equatorial zonular tension increases while the posterior zonular tension decreases, resulting in an increase in the change in Central Optical Power (COP). In the equatorial zonular-cut model, both the anterior and posterior zonular tensions increase, causing a decreasing change in COP. The change in COP decreases only slightly in the other models. For vitreous zonular-cut models, little change was seen in either the zonular tension or the change in COP. CONCLUSIONS: The anterior and the equatorial zonular fibres have the major influence on the change in lens optical power, with the anterior zonules having a negative effect and the equatorial zonules contributing a positive effect. The contribution to variations in optical power by the equatorial zonules is much larger than by the posterior zonules.


Asunto(s)
Cuerpo Ciliar , Cristalino , Acomodación Ocular , Ligamentos
7.
Comput Biol Med ; 160: 106972, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37120989

RESUMEN

BACKGROUND: Current treatment of cataract widely used in clinics is by removal of the opacified content from the lens capsule which is followed by insertion of an artificial intraocular lens (IOL). The IOL needs to remain stabilized in the capsular bag for the eye to achieve desired optical quality. The present study aims to investigate how different design parameters of the IOL can influence the axial and rotational stabilities of IOLs using Finite Element Analysis. METHODS: Eight designs of IOL with variations in types of optics surface, types of haptics and haptic angulation were constructed using parameters obtained from an online IOL databank (IOLs.eu). Each IOL was subjected to compressional simulations both by two clamps and by a collapsed natural lens capsule with an anterior rhexis. Comparisons were made between the two scenarios on axial displacement, rotation, and distribution of stresses. RESULTS: The clamps compression method set out by ISO does not always produce the same outcome as the in-the-bag analysis. The open-loop IOLs show better axial stability while the closed-loop IOLs show better rotational stability when compressed by two clamps. Simulations of IOL in the capsular bag only demonstrate better rotational stability for closed-loop designs. CONCLUSIONS: The rotational stability of an IOL is largely dependent on its haptic design whilst the axial stability is affected by the appearance of the rhexis to the anterior capsule which has a major influence on designs with a haptic angulation.


Asunto(s)
Capsulorrexis , Lentes Intraoculares , Capsulorrexis/métodos , Análisis de Elementos Finitos , Implantación de Lentes Intraoculares/métodos , Diseño de Prótesis , Humanos
8.
Bioengineering (Basel) ; 10(2)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36829636

RESUMEN

The young eye has an accommodative ability involving lens shape changes to focus over different distances. This function gradually decreases with age, resulting in presbyopia. Greater insights into the mechanical properties of anterior eye structures can improve understanding of the causes of presbyopia. The present study aims to develop a multi-axis stretching device for evaluating the mechanical properties of the intact eye lens. A stretching device integrating the mechanical stretcher, motor, torque sensor and data transmission mechanism was designed and developed by 3D printing. The mechanical stretcher can convert rotation into radial movement, both at constant speeds, according to the spiral of Archimedes. The loading unit equipped with eight jaws can hold the eye sample tightly. The developed device was validated with a spring of known constant and was further tested with anterior porcine eye segments. The validation experiment using the spring resulted in stiffness values close to the theoretical spring constant. Findings from measurements with porcine eye samples indicated that the measured forces are within the ranges reported in the literature. The developed multi-axis stretching device has good repeatability during experiments with similar settings and can be reliably used for mechanical evaluations of the intact eye lens.

9.
Invest Ophthalmol Vis Sci ; 63(5): 15, 2022 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-35575904

RESUMEN

Purpose: To investigate how cataract-linked mutations affect the gradient refractive index (GRIN) and lens opacification in mouse lenses and whether there is any effect on the optics of the lens from treatment with an oxysterol compound. Methods: A total of 35 mice including wild-type and knock-in mutants (Cryaa-R49C and Cryab-R120G) were used in these experiments: 26 mice were treated with topical VP1-001, an oxysterol, in one eye and vehicle in the other, and nine mice were untreated controls. Slit lamp biomicroscopy was used to analyze the lens in live animals and to provide apparent cataract grades. Refractive index in the lenses of 64 unfixed whole mouse eyes was calculated from measurements with X-ray phase tomography based on X-ray Talbot interferometry with a synchrotron radiation source. Results: Heterozygous Cryaa-R49C lenses had slightly irregularly shaped contours in the center of the GRIN and distinct disturbances of the gradient index at the anterior and posterior poles. Contours near the lens surface were denser in homozygous Cryab-R120G lenses. Treatment with topical VP1-001, an oxysterol, showed an improvement in refractive index profiles in 61% of lenses and this was supported by a reduction in apparent lens opacity grade by 1.0 in 46% of live mice. Conclusions: These results indicate that α-crystallin mutations alter the refractive index gradient of mouse lenses in distinct ways and suggest that topical treatment with VP1-001 may improve lens transparency and refractive index contours in some lenses with mutations.


Asunto(s)
Catarata , Cristalinas , Cristalino , Oxiesteroles , Animales , Catarata/genética , Cristalinas/genética , Modelos Animales de Enfermedad , Cristalino/metabolismo , Cristalino/fisiología , Ratones , Oxiesteroles/farmacología
11.
Nanomaterials (Basel) ; 11(6)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206140

RESUMEN

Cerium oxide nanoparticles (nanoceria) are generally known for their recyclable antioxidative properties making them an appealing biomaterial for protecting against physiological and pathological age-related changes that are caused by reactive oxygen species (ROS). Cataract is one such pathology that has been associated with oxidation and glycation of the lens proteins (crystallins) leading to aggregation and opacification. A novel coated nanoceria formulation has been previously shown to enter the human lens epithelial cells (HLECs) and protect them from oxidative stress induced by hydrogen peroxide (H2O2). In this work, the mechanism of nanoceria uptake in HLECs is studied and multiple anti-cataractogenic properties are assessed in vitro. Our results show that the nanoceria provide multiple beneficial actions to delay cataract progression by (1) acting as a catalase mimetic in cells with inhibited catalase, (2) improving reduced to oxidised glutathione ratio (GSH/GSSG) in HLECs, and (3) inhibiting the non-enzymatic glucose-induced glycation of the chaperone lens protein α-crystallin. Given the multifactorial nature of cataract progression, the varied actions of nanoceria render them promising candidates for potential non-surgical therapeutic treatment.

12.
Exp Eye Res ; 197: 108112, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32561482

RESUMEN

The development of the eye requires the co-ordinated integration of optical and neural elements to create a system with requisite optics for the given animal. The eye lens has a lamellar structure with gradually varying protein concentrations that increase towards the centre, creating a gradient refractive index or GRIN. This provides enhanced image quality compared to a homogeneous refractive index lens. The development of the GRIN during ocular embryogenesis has not been investigated previously. This study presents measurements using synchrotron X-ray Talbot interferometry and scanning electron microscopy of chick eyes from embryonic day 10: midway through embryonic development to E18: a few days before hatching. The lens GRIN profile is evident from the youngest age measured and increases in magnitude of refractive index at all points as the lens grows. The profile is parabolic along the optic axis and has two distinct regions in the equatorial plane. We postulate that these may be fundamental for the independent central and peripheral processes that contribute to the optimisation of image quality and the development of an eye that is emmetropic. The spatial distributions of the distinct GRIN profile regions match with previous measurements on different fibre cell groups in chick lenses of similar developmental stages. Results suggest that tissue compaction may not be necessary for development of the GRIN in the chick eye lens.


Asunto(s)
Cristalino/embriología , Refracción Ocular/fisiología , Animales , Pollos , Interferometría , Cristalino/ultraestructura , Microscopía Electrónica de Rastreo , Modelos Animales , Tomografía de Coherencia Óptica
13.
FASEB J ; 34(4): 5552-5562, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32103543

RESUMEN

The optics of the eye is the key to a functioning visual system. The exact nature of the correlation between ocular optics and eye development is not known because of the paucity of knowledge about the growth of a key optical element, the eye lens. The sophisticated optics of the lens and its gradient of refractive index provide the superior optical quality that the eye needs and which, it is thought, has a major influence on the development of proper visual function. The nature of a gradient refractive index lens, however, renders accurate measurements of its development difficult to make and has been the reason why the influence of lens growth on visual function remains largely unknown. Novel imaging techniques have made it possible to investigate growth of the eye lens in the zebrafish. This study shows measurements using X-ray Talbot interferometry of three-dimensional gradient index profiles in eye lenses of zebrafish from late larval to adult stages. The zebrafish lens shows evidence of a gradient of refractive index from the earliest stages measured and its growth suggests an apparent coincidence between periods of rapid increase in refractive index in the lens nucleus and increased expression of a particular crystallin protein group.


Asunto(s)
Córnea/citología , Córnea/fisiología , Cristalino/citología , Cristalino/fisiología , Óptica y Fotónica , Animales , Cómputos Matemáticos , Refractometría , Pez Cebra
14.
IEEE Trans Biomed Eng ; 67(4): 999-1006, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31395531

RESUMEN

OBJECTIVE: The human visual system alters its focus by a shape change of the eye lens. The extent to which the lens can adjust ocular refractive power is dependent to a significant extent on its material properties. Yet, this fundamental link between the optics and mechanics of the lens has been relatively under-investigated. This study aims to investigate this opto-mechanical link within the eye lens to gain insight into the processes of shape alteration and their respective decline with age. METHODS: Finite Element models based on biological lenses were developed for five ages: 16, 35, 40, 57, and 62 years by correlating in vivo measurements of the longitudinal modulus using Brillouin scattering with in vitro X-ray interferometric measurements of refractive index and taking into account various directions of zonular force. RESULTS: A model with radial cortical Young's moduli provides the same amount of refractive power with less change in thickness than a model with uniform cortical Young's modulus with a uniform stress distribution and no discontinuities along the cortico-nuclear boundary. The direction of zonular angles can significantly influence curvature change regardless of the modulus distribution. CONCLUSIONS: The present paper proposes a modelling approach for the human lens, coupling optical and mechanical properties, which shows the effect of parameter choice on model response. SIGNIFICANCE: This advanced modelling approach, considering the important interplay between optical and mechanical properties, has potential for use in design of accommodating implant lenses and for investigating non-biological causes of pathological processes in the lens (e.g., cataract).


Asunto(s)
Cristalino , Lentes , Adolescente , Adulto , Módulo de Elasticidad , Humanos , Persona de Mediana Edad , Refractometría , Visión Ocular , Adulto Joven
15.
Int J Ophthalmol ; 12(11): 1751-1757, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31741865

RESUMEN

AIM: To compare the results of in vivo human high resolution image registration studies of the eye during accommodation to the predictions of mathematical and finite element models of accommodation. METHODS: Data from published high quality image registration studies of pilocarpine induced accommodative changes of equatorial lens radius (ELR) and central lens thickness (CLT) were statistically analyzed. RESULTS: The mean changes in ELR and CLT were 6.76 µm/diopter and 6.51 µm/diopter, respectively. The linear regressions, reflecting the association between ELR and accommodative amplitude (AAELR) was: slope=6.58 µm/diopter, r2 =0.98, P<0.0001 and between CLT and AACLT was: slope=6.75 µm/diopter, r2 =0.83, P<0.001. On the basis of these relationships, the CLT slope and the AAELR were used to predict the measured change in ELR (ELRpredicted). There was no statistical difference between ELRpredicted and the measured ELR as demonstrated by a Student's paired t-test: P=0.96 and linear regression analysis: slope=0.97, r2 =0.98, P<0.00001. CONCLUSION: Image registration with invariant positional references demonstrates that ELR and CLT equivalently minimally increase ∼7.0 µm/diopter during accommodation. The small equivalent increases in ELR and CLT are associated with a large accommodative amplitude. These findings are consistent with the predictions of mathematical and finite element models that specified the stiffness of the lens nucleus is the same or greater than the lens cortex and that accommodation involves a small force (<5 g).

16.
J Opt Soc Am A Opt Image Sci Vis ; 36(4): B116-B122, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31044989

RESUMEN

Ageing changes to the various components of the accommodative system of the eye lens contribute to the loss of focusing power. The relative contributions of each ageing component, however, are not well defined. This study investigates the contribution of geometric parameters and material properties on accommodation, simulated using models based on human lenses aged 16, 35, and 48 years. Each model was tested using two different sets of material properties and a range of zonular fiber angles and was compared to results from in vivo measurements. The geometries and material parameters of older and younger lens models were interchanged to investigate the role of shape and material on accommodative capacity. Results indicate that geometry has the greater role in accommodation.


Asunto(s)
Acomodación Ocular , Envejecimiento/fisiología , Análisis de Elementos Finitos , Cristalino/fisiología , Fenómenos Mecánicos , Adolescente , Fenómenos Biomecánicos , Humanos , Persona de Mediana Edad
17.
Prog Retin Eye Res ; 71: 114-131, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30439450

RESUMEN

The ability of the human lens to accommodate is mediated by the ciliary muscle and zonule; the manifest optical power changes depend on the shape and material properties of the lens. The latter are difficult to measure with accuracy and, given the dynamic aspects of accommodation and the ageing of cells and tissues, the biomechanics of the lens is neither fixed nor constant. A range of techniques have been developed to measure both ageing trends and spatial variations in the mechanical properties and these have yielded a diverse array of findings and respective conclusions. The majority of quasi-static measurements, where the observation time is in minutes or hours, indicate that the stiffness of the lens increases with age at a faster rate in the lens centre than in the periphery. Dynamic measurements show that lens material properties are dependent on the loading frequency. Recent in vivo analyses suggest that, along the optic axis, profiles of elastic moduli are very similar to profiles of refractive index. This review assesses the advantages and limitations of different measurement techniques and consequent variations in elastic moduli that have been found. Consideration is given to the role of computational modelling and the various modelling methods that have been applied. The changes in mechanical properties of the lens associated with ageing and pathology and future implications for implant design are discussed.


Asunto(s)
Acomodación Ocular/fisiología , Cuerpo Ciliar/fisiología , Cristalino/fisiología , Humanos , Modelos Biológicos
18.
Clin Ophthalmol ; 12: 201-205, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29403261

RESUMEN

PURPOSE: To measure the maximum, objectively measured, accommodative amplitude, produced by pharmacologic stimulation. METHODS: Thirty-seven healthy subjects were enrolled, with a mean age of 20.2±1.1 years, corrected visual acuity of 20/20, and mean spherical equivalent refraction (SER) =-0.83±1.60 diopters. For each subject, the right pupil was dilated with phenylephrine 10%. After 30 minutes, the pupil was measured, the left eye was patched, and the right eye was autorefracted. Pilocarpine 4% was then instilled in the right eye, followed by phenylephrine. At 45 minutes after the pilocarpine, autorefraction and pupil size were again measured. RESULTS: Mean pupil size pre- and postpilocarpine was 8.0±0.8 mm and 4.4±1.9 mm, respectively. Pre- and postpilocarpine, the mean SER was -0.83±1.60 and -10.55±4.26 diopters, respectively. The mean pilocarpine-induced accommodative amplitude was 9.73±3.64 diopters. Five subjects had accommodative amplitudes ≥14.00 diopters. Accommodative amplitude was not significantly related to baseline SER (p-value =0.24), pre- or postpilocarpine pupil size (p-values =0.13 and 0.74), or change in pupil size (p-value =0.37). Iris color did not statistically significantly affect accommodative amplitude (p-value =0.83). CONCLUSION: Following topically applied pilocarpine, the induced objectively measured accommodation in the young eye is greater than or equal to the reported subjectively measured voluntary maximum accommodative amplitude.

19.
Graefes Arch Clin Exp Ophthalmol ; 256(2): 395-402, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29147767

RESUMEN

PURPOSE: Our purpose was to determine the changes in anterior chamber depth (ACD) and central lens thickness (CLT) during pharmacologically induced accommodation. METHODS: Following pupillary dilation with phenylephrine 10%, baseline auto-refractions and swept-source optical coherence tomographic biometric images (Zeiss IOLMaster 700) were obtained from the right eyes of 25 subjects aged 19 to 24 years. Pilocarpine 4% and phenylephrine 10% were then instilled into these right eyes. One hour later, auto-refractions and biometric imaging were repeated. Only data from eight of 25 subjects met the following stringent criteria to be included in the study analysis: pre and post-pilocarpine biometric foveal images were registerable, the images of the corneal centers were shifted by ≤100 µm, pupils >5 mm and the pharmacologically induced refractive change was ≥ -7 diopters. RESULTS: The mean auto-refractive accommodative change for the eight included subjects was -12.45 diopters (± 3.45 diopters). The mean change in CLT was 81 µm (± 54 µm) and the mean change in ACD was -145 µm (± 86 µm). Superimposition of the registered pre and post-pilocarpine biometric images of the sagittal sections of the whole eye from each subject demonstrated that the position of the whole lens did not shift either anteriorly, posteriorly or vertically during pharmacologically induced accommodation. CONCLUSIONS: A small increase in lens thickness was associated with a large change in accommodative amplitude and no significant change in lens position as predicted by the Schachar theory.


Asunto(s)
Acomodación Ocular/fisiología , Cámara Anterior/diagnóstico por imagen , Segmento Anterior del Ojo/diagnóstico por imagen , Cristalino/fisiología , Refracción Ocular/fisiología , Adulto , Biometría/métodos , Femenino , Humanos , Cristalino/citología , Masculino , Pupila , Tomografía de Coherencia Óptica/métodos , Adulto Joven
20.
Sci Rep ; 7(1): 16688, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29192148

RESUMEN

The lens provides refractive power to the eye and is capable of altering ocular focus in response to visual demand. This capacity diminishes with age. Current biomedical technologies, which seek to design an implant lens capable of replicating the function of the biological lens, are unable as yet to provide such an implant with the requisite optical quality or ability to change the focussing power of the eye. This is because the mechanism of altering focus, termed accommodation, is not fully understood and seemingly conflicting theories require experimental support which is difficult to obtain from the living eye. This investigation presents finite element models of the eye lens based on data from human lenses aged 16 and 35 years that consider the influence of various modelling parameters, including material properties, a wide range of angles of force application and capsular thickness. Results from axisymmetric models show that the anterior and posterior zonules may have a greater impact on shape change than the equatorial zonule and that choice of capsular thickness values can influence the results from modelled simulations.


Asunto(s)
Acomodación Ocular/fisiología , Tecnología Biomédica/métodos , Cristalino/fisiología , Modelos Biológicos , Adolescente , Adulto , Simulación por Computador , Análisis de Elementos Finitos , Humanos , Lentes Intraoculares , Diseño de Prótesis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...