Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063159

RESUMEN

A series of ZnCr2-xHoxSe4 microcrystalline spinels (where x = 0.05, 0.075, and 0.10) containing holmium ions in octahedral coordination were obtained by sintering of adequate reactants at high temperatures. The obtained doped materials were characterized by X-ray diffraction, Scanning Electron Microscopy, UV-Vis-NIR, molecular field approximation, and XPS spectroscopies. Their thermal properties were also investigated. The doping of the ZnCr2S4 matrix with paramagnetic Ho3+ ions with a content of not more than 0.1 and a screened 4f shell revealed a significant effect of orbital and Landau diamagnetism, a strong reduction in short-range ferromagnetic interactions, and a broadening and shift of the peak of the first critical field by simultaneous stabilization of the sharp peak in the second critical field. These results correlate well with FPLO calculations, which show that Cr sites have magnetic moments of 3.19 µB and Ho sites have significantly larger ones with a value of 3.95 µB. Zn has a negligible magnetic polarization of 0.02 µB, and Se induces a polarization of approximately -0.12 µB.


Asunto(s)
Holmio , Zinc , Zinc/química , Holmio/química , Difracción de Rayos X , Selenio/química , Cromo/química , Fenómenos Magnéticos
2.
Materials (Basel) ; 16(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37444879

RESUMEN

This study aimed to obtain and investigate ZnCr2Se4 single crystals doped with rhenium. The single crystals were obtained by applying chemical vapour transport. An X-ray study confirmed the cubic (Fd3¯m) structure of the tested crystals. Thermal, magnetic, electrical, and specific heat measurements accurately determined the physicochemical characteristics, which revealed that the obtained single crystals are p-type semiconductors with antiferromagnetic order below the Néel temperature TN = 21.7 K. The Debye temperature had a value of 295 K. The substitution of Re-paramagnetic ions, possessing a screened 5d-shell, in place of Zn-diamagnetic ions, caused an increase in the activation energy, Fermi energy, and Fermi temperature compared to the pure ZnCr2Se4. The boost of the dc magnetic field induced a shift of TN towards lower temperatures and a spin fluctuation peak visible at Hdc = 40 and 50 kOe. The obtained single crystals are thermally stable up to 1100 °C.

3.
Molecules ; 28(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36985604

RESUMEN

Twelve drugs containing sildenafil compounds (sildenafil citrate and sildenafil base) were examined using X-ray studies and thermal analysis. According to the manufacturer's information, the presence of sildenafil was confirmed in all investigated drugs. The positions of diffraction lines (value of 2θ angle) agree with the patterns presented in the ICDD database, Release 2018 (ICDD-International Centre of Diffraction Data). The difference expresses the agreement in the position of the diffraction line between the tested substance and the standard. A good agreement is when this difference is less than 0.2°. The values of interplanar distances dhkl are also compatible with the ICDD database. It indicated that the drug examined was genuine. Because all drugs are mixtures of different substances (API and excipients), the various diffraction line intensities were detected in all observed X-ray images for the tested drugs. The intensity of the diffraction line depends on many factors, like the amount of substance, coexisting phases, and mass absorption coefficient of the mixture. The thermal analysis confirmed the results obtained by the X-ray study. On DSC curves, the endothermic peaks for sildenafil compounds were observed. The determined melting points of sildenafil compounds corresponded to the values available in the literature. The results gathered by connecting two methods, X-ray study and thermal analysis, can help identify irregularities that may exist in pharmaceutical specimens, e.g., distinguishing genuine from counterfeit products, the presence of a correct polymorph, a lack of active substance, an inaccurate amount of the active substance, or excipients in the tested drug.


Asunto(s)
Excipientes , Citrato de Sildenafil/química , Rayos X , Excipientes/química , Radiografía , Difracción de Rayos X
4.
Nanomaterials (Basel) ; 12(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36558353

RESUMEN

In this work, the series of Dy3+-doped silicate xerogels were synthesized by sol-gel technique and further processed at 350 °C into SiO2-LaF3:Dy3+ nano-glass-ceramic materials. The X-ray diffraction (XRD) measurements, along with the thermal analysis, indicated that heat-treatment triggered the decomposition of La(TFA)3 inside amorphous sol-gel hosts, resulting in the formation of hexagonal LaF3 phase with average crystal size at about ~10 nm. Based on the photoluminescence results, it was proven that the intensities of blue (4F9/2 → 6H15/2), yellow (4F9/2 → 6H13/2), and red (4F9/2 → 6H11/2) emissions, as well as the calculated yellow-to-blue (Y/B) ratios, are dependent on the nature of fabricated materials, and from fixed La3+:Dy3+ molar ratios. For xerogels, the emission was gradually increased, and the τ(4F9/2) lifetimes were elongated to 42.7 ± 0.3 µs (La3+:Dy3+ = 0.82:0.18), however, for the sample with the lowest La3+:Dy3+ molar ratio (0.70:0.30), the concentration quenching was observed. For SiO2-LaF3:Dy3+ nano-glass-ceramics, the concentration quenching effect was more visible than for xerogels and started from the sample with the highest La3+:Dy3+ molar ratio (0.988:0.012), thus the τ(4F9/2) lifetimes became shorter from 1731.5 ± 5.7 up to 119.8 ± 0.4 µs. The optical results suggest, along with an interpretation of XRD data, that Dy3+ ions were partially entered inside LaF3 phase, resulting in the shortening of Dy3+-Dy3+ inter-ionic distances.

5.
Materials (Basel) ; 15(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955197

RESUMEN

In this work, the synthesis and characterization of Li2MgGeO4:Ho3+ ceramics were reported. The X-ray diffraction measurements revealed that the studied ceramics belong to the monoclinic Li2MgGeO4. Luminescence properties were analyzed in the visible spectral range. Green and red emission bands correspondent to the 5F4,5S2→5I8 and 5F5→5I8 transitions of Ho3+ were observed, and their intensities were significantly dependent on activator concentration. Luminescence spectra were also measured under direct excitation of holmium ions or ceramic matrix. Holmium ions were inserted in crystal lattice Li2MgGeO4, giving broad blue emission and characteristic 4f-4f luminescent transitions of rare earths under the selective excitation of the ceramic matrix. The presence of the energy transfer process between the host lattice and Ho3+ ions was suggested.

6.
Materials (Basel) ; 15(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35955224

RESUMEN

Monocrystalline chalcogenide spinels ZnCr2Se4 are antiferromagnetic and semiconductor materials. They can be used to dope or alloy with related semiconducting spinels. Therefore, their Pb-doped display is expected to have unique properties and new potential applications. This paper presents the results of dc and ac magnetic measurements, including the critical fields visible on the magnetisation isotherms, electrical conductivity, and specific heat of the ZnCr2S4:Pb single crystals. These studies showed that substituting the diamagnetic Pb ion with a large ion radius for the Zn one leads to strong short-range ferromagnetic interactions in the entire temperature range and spin fluctuations in the paramagnetic region at Hdc = 50 kOe.

7.
Nanomaterials (Basel) ; 12(2)2022 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-35055276

RESUMEN

The synthesis and characterization of multicolor light-emitting nanomaterials based on rare earths (RE3+) are of great importance due to their possible use in optoelectronic devices, such as LEDs or displays. In the present work, oxyfluoride glass-ceramics containing BaF2 nanocrystals co-doped with Tb3+, Eu3+ ions were fabricated from amorphous xerogels at 350 °C. The analysis of the thermal behavior of fabricated xerogels was performed using TG/DSC measurements (thermogravimetry (TG), differential scanning calorimetry (DSC)). The crystallization of BaF2 phase at the nanoscale was confirmed by X-ray diffraction (XRD) measurements and transmission electron microscopy (TEM), and the changes in silicate sol-gel host were determined by attenuated total reflectance infrared (ATR-IR) spectroscopy. The luminescent characterization of prepared sol-gel materials was carried out by excitation and emission spectra along with decay analysis from the 5D4 level of Tb3+. As a result, the visible light according to the electronic transitions of Tb3+ (5D4 → 7FJ (J = 6-3)) and Eu3+ (5D0 → 7FJ (J = 0-4)) was recorded. It was also observed that co-doping with Eu3+ caused the shortening in decay times of the 5D4 state from 1.11 ms to 0.88 ms (for xerogels) and from 6.56 ms to 4.06 ms (for glass-ceramics). Thus, based on lifetime values, the Tb3+/Eu3+ energy transfer (ET) efficiencies were estimated to be almost 21% for xerogels and 38% for nano-glass-ceramics. Therefore, such materials could be successfully predisposed for laser technologies, spectral converters, and three-dimensional displays.

8.
Materials (Basel) ; 14(11)2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34067491

RESUMEN

The new series of single-crystalline chromium selenides, Ta-doped ZnCr2Se4, was synthesised by a chemical vapour transport method to determine the impact of a dopant on the structural and thermodynamic properties of the parent compound. We present comprehensive investigations of structural, electrical transport, magnetic, and specific heat properties. It was expected that a partial replacement of Cr ions by a more significant Ta one would lead to a change in direct magnetic interactions between Cr magnetic moments and result in a change in the magnetic ground state and electric transport properties of the ZnCr2-xTaxSe4 (x = 0.05, 0.06, 0.07, 0.08, 0.1, 0.12) system. We found that all the elements of the cubic system had a cubic spinel structure; however, the doping gain linearly increased the ZnCr2-xTaxSe4 unit cell volume. Doping with tantalum did not significantly change the semiconductor and magnetic properties of ZnCr2Se4. For all studied samples (0 ≤ x ≤ 0.12), an antiferromagnetic order (AFM) below TN~22 K was observed. However, a small amount of Ta significantly reduced the second critical field (Hc2) from 65 kOe for x = 0.0 (ZnCr2Se4 matrix) up to 42.2 kOe for x = 0.12, above which the spin helical system changed to ferromagnetic (FM). The Hc2 reduction can lead to strong competition among AFM and FM interactions and spin frustration, as the specific heat under magnetic fields H < Hc2 shows a strong field decrease in TN.

9.
Molecules ; 27(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011434

RESUMEN

X-ray powder diffraction (XRPD) and thermal analysis (differential scanning calorimetry/derivative of thermogravimetry (DSC/DTG)) are solid-state techniques that can be successfully used to identify and quantify various chemical compounds in polycrystalline mixtures, such as dietary supplements or drugs. In this work, 31 dietary supplements available on the Polish market that contain iron compounds, namely iron gluconate, fumarate, bisglycinate, citrate and pyrophosphate, were evaluated. The aim of the work was to identify iron compounds declared by the manufacturer as food supplements and to try to verify compliance with the manufacturer's claims. Studies performed by X-ray and thermal analysis confirmed that crystalline iron compounds (iron (II) gluconate, iron (II) fumarate), declared by the manufacturers, were present in the investigated dietary supplements. Iron (II) bisglycinate proved to be semi-crystalline. However, depending on the composition of the formulation, it was possible to identify this compound in the tested supplements. For amorphous iron compounds (iron (III) citrate and iron (III) pyrophosphate), the diffraction pattern does not have characteristic diffraction lines. Food supplements containing crystalline iron compounds have a melting point close to the melting point of pure iron compounds. The presence of excipients was found to affect the shapes and positions of the endothermic peaks significantly. Widening of endothermic peaks and changes in their position were observed, as well as exothermic peaks indicating crystallization of amorphous compounds. Weight loss was determined for all dietary supplements tested. Analysis of the DTG curves showed that the thermal decomposition of most food supplements takes place in several steps. The results obtained by a combination of both simple, relatively fast and reliable XRPD and DSC/DTG methods are helpful in determining phase composition, pharmaceutical abnormalities or by detecting the presence of the correct polymorphic form.


Asunto(s)
Rastreo Diferencial de Calorimetría , Suplementos Dietéticos/análisis , Hierro/análisis , Termogravimetría , Difracción de Rayos X , Difosfatos/química , Fumaratos/análisis , Fumaratos/química , Gluconatos/química , Hierro/química
10.
Molecules ; 25(24)2020 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-33322235

RESUMEN

Studies carried out by X-ray and thermal analysis confirmed that acetaminophen (paracetamol), declared by the manufacturers as an Active Pharmaceutical Ingredient (API), was present in all studied medicinal drugs. Positions of diffraction lines (2θ angles) of the studied drugs were consistent with standards for acetaminophen, available in the ICDD PDF database Release 2008. |Δ2θ| values were lower than 0.2°, confirming the authenticity of the studied drugs. Also, the values of interplanar distances dhkl for the examined samples were consistent with those present in the ICDD. Presence of acetaminophen crystalising in the monoclinic system (form I) was confirmed. Various line intensities for API were observed in the obtained diffraction patterns, indicating presence of the preferred orientation of the crystallites in the examined samples. Thermal analysis of the studied substances confirmed the results obtained by X-ray analysis. Drugs containing only acetaminophen as an API have melting point close to that of pure acetaminophen. It was found that presence of other active and auxiliary substances affected the shapes and positions of endothermal peaks significantly. A broadening of endothermal peaks and their shift towards lower temperatures were observed accompanying an increase in the contents of additional substances being "impurities" in relation to the API. The results obtained by a combination of the two methods, X-ray powder diffraction (XRPD) and differential scanning calorimetry/thermogravimetry (DSC/TGA), may be useful in determination of abnormalities which can occur in pharmaceutical preparations, e.g., for distinguishing original drugs and forged products, detection of the presence of a proper polymorphic form or too low content of the active substance in the investigated drug.


Asunto(s)
Acetaminofén/química , Rastreo Diferencial de Calorimetría , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/química , Termogravimetría , Difracción de Rayos X
11.
Materials (Basel) ; 13(19)2020 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-33020461

RESUMEN

Novel multicomponent titanate-germanate glasses singly doped with transition metal (Cr3+) and rare earth ions (Eu3+) were synthesized and the glass transition temperatures and thermal stability parameters were determined using DSC measurements. X-ray diffraction analysis confirmed fully amorphous nature of the received samples. Their structural and optical properties were compared with germanate glasses without TiO2. Correlation between local structure and optical properties in titanate-germanate glasses is well evidenced by FT-IR, Raman, EPR, and luminescence spectroscopy. In particular, luminescence spectra and their decays are examined for glass samples, where GeO2 was partially substituted by TiO2.

12.
Monatsh Chem ; 149(5): 977-985, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29720770

RESUMEN

ABSTRACT: X-ray analysis confirmed that in all investigated samples, the active API (acetylsalicylic acid and ascorbic acid) was present. The values of the interplanar distance dhkl for the studied samples are in good accordance with those presented in the ICDD database. The intensities of the diffraction lines depend on the content of the component in the tested preparation. Therefore, different intensities of lines for the APIs were observed in the obtained diffraction patterns. Thermal analysis of the studied substances showed that during the thermal analysis, the following phenomena might occur: dehydration and (or) melting, crystalline transformation. Moreover, it was found that the chemical structure of the studied compounds affects the process of their thermal decomposition. The data obtained during these investigations can be useful in quick tests of physicochemical discrepancies and abnormalities between potential components of pharmaceutical preparations. The evidence for the interaction can be obtained by comparing DSC and TG curves of the drug and the excipient, as well as those of their physical mixtures. For this reason, the study of characteristics of thermal decomposition of drugs and excipients is necessary. Based on the above investigations, it may be stated that a combination of two methods: XRPD and DSC can be used to distinguish the original drugs from counterfeit products, e.g., by checking for the presence of the correct API or by a comparison of the drugs fingerprint.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...