Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Med (Lausanne) ; 5: 233, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30186836

RESUMEN

Allogeneic cell therapy products are generating encouraging clinical and pre-clinical results. Pluripotent stem cell (PSC) derived therapies, in particular, have substantial momentum and the potential to serve as treatments for a wide range of indications. Many of these therapies are also expected to have large market sizes and require cell doses of ≥109 cells. As therapeutic technologies mature, it is essential for the cell manufacturing industry to correspondingly develop to adequately support commercial scale production. To that end, there is much that can be learned and adapted from traditional manufacturing fields. In this review, we highlight key areas of allogeneic cell therapy manufacturing, identify current gaps, and discuss strategies for integrating new solutions. It is anticipated that cell therapy scale-up manufacturing solutions will need to generate batches of up to 2,000 L in single-use disposable formats, which constrains selection of currently available upstream hardware. Suitable downstream hardware is even more limited as processing solutions from the biopharmaceutical field are often not compatible with the unique requirements of cell therapy products. The advancement of therapeutic cell manufacturing processes to date has largely been developed with a cell biology driven approach, which is essential in early development. However, for truly robust and standardized production in a maturing field, a highly controlled manufacturing engineering strategy must be employed, with the implementation of automation, process monitoring and control to increase batch consistency and efficiency.

2.
Biologicals ; 56: 67-83, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30150108

RESUMEN

Sessions included an overview of past cell therapy (CT) conferences sponsored by the International Alliance for Biological Standardization (IABS). The sessions highlighted challenges in the field of human pluripotent stem cells (hPSCs) and also addressed specific points on manufacturing, bioanalytics and comparability, tumorigenicity testing, storage, and shipping. Panel discussions complemented the presentations. The conference concluded that a range of new standardization groups is emerging that could help the field, but ways must be found to ensure that these efforts are coordinated. In addition, there are opportunities for regulatory convergence starting with a gap analysis of existing guidelines to determine what might be missing and what issues might be creating divergence. More specific global regulatory guidance, preferably from WHO, would be welcome. IABS and the California Institute for Regenerative Medicine (CIRM) will explore with stakeholders the development of a practical and innovative road map to support early CT product (CTP) developers.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos , Células Madre Pluripotentes , Pruebas de Carcinogenicidad , Guías como Asunto , Humanos , Control de Calidad , Medicina Regenerativa
3.
Diabetes ; 58(9): 2084-92, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19549714

RESUMEN

OBJECTIVE: Phosphatidylinositol 3-OH kinase (PI3K) has a long-recognized role in beta-cell mass regulation and gene transcription and is implicated in the modulation of insulin secretion. The role of nontyrosine kinase receptor-activated PI3K isoforms is largely unexplored. We therefore investigated the role of the G-protein-coupled PI3Kgamma and its catalytic subunit p110gamma in the regulation of insulin granule recruitment and exocytosis. RESEARCH DESIGN AND METHODS: The expression of p110gamma was knocked down by small-interfering RNA, and p110gamma activity was selectively inhibited with AS605240 (40 nmol/l). Exocytosis and granule recruitment was monitored by islet perifusion, whole-cell capacitance, total internal reflection fluorescence microscopy, and electron microscopy in INS-1 and human beta-cells. Cortical F-actin was examined in INS-1 cells and human islets and in mouse beta-cells lacking the phosphatase and tensin homolog (PTEN). RESULTS: Knockdown or inhibition of p110gamma markedly blunted depolarization-induced insulin secretion and exocytosis and ablated the exocytotic response to direct Ca(2+) infusion. This resulted from reduced granule localization to the plasma membrane and was associated with increased cortical F-actin. Inhibition of p110gamma had no effect on F-actin in beta-cells lacking PTEN. Finally, the effect of p110gamma inhibition on granule localization and exocytosis could be rapidly reversed by agents that promote actin depolymerization. CONCLUSIONS: The G-protein-coupled PI3Kgamma is an important determinant of secretory granule trafficking to the plasma membrane, at least in part through the negative regulation of cortical F-actin. Thus, p110gamma activity plays an important role in maintaining a membrane-docked, readily releasable pool of secretory granules in insulinoma and human beta-cells.


Asunto(s)
Células Secretoras de Insulina/citología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Vesículas Secretoras/metabolismo , Actinas/metabolismo , Animales , Canales de Calcio/fisiología , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ib , Exocitosis/fisiología , Humanos , Secreción de Insulina , Insulinoma , Isoenzimas/genética , Isoenzimas/metabolismo , Potenciales de la Membrana/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Neoplasias Pancreáticas , Técnicas de Placa-Clamp , Fosfatidilinositol 3-Quinasas/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Quinoxalinas/farmacología , ARN Interferente Pequeño , Tiazolidinedionas/farmacología
4.
Pflugers Arch ; 457(6): 1343-50, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18795319

RESUMEN

Exocytosis of secretory vesicles results in the release of insulin from pancreatic beta-cells, although little is known about this process in humans. We examined the exocytosis of single secretory vesicles and their associated fusion pores in human beta-cells by cell-attached capacitance and conductance measurement. Unitary capacitance steps were observed, consistent with the exocytosis of single secretory vesicles. These were often coincident with increases in patch conductance representing the presence of a stable fusion pore. In some events, the fusion pore closed, mediating kiss-and-run, which contributed 20% of the exocytotic events. The cAMP-raising agent forskolin (5 microM) doubled the relative contribution of kiss-and-run. This effect was confirmed visually in MIN6 cells expressing a fluorescent granule probe. Thus, we demonstrate the unitary capacitance steps and fusion pores during single vesicle exocytosis in human beta-cells. Furthermore, these secretory vesicles can undergo rapid recycling by kiss-and-run, and this process is up-regulated by cAMP.


Asunto(s)
Exocitosis/fisiología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Vesículas Secretoras/metabolismo , Adulto , Animales , Colforsina/farmacología , Capacidad Eléctrica , Exocitosis/efectos de los fármacos , Humanos , Secreción de Insulina , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...