Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1224318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886644

RESUMEN

Pathogenic heterozygous variants in SGMS2 cause a rare monogenic form of osteoporosis known as calvarial doughnut lesions with bone fragility (CDL). The clinical presentations of SGMS2-related bone pathology range from childhood-onset osteoporosis with low bone mineral density and sclerotic doughnut-shaped lesions in the skull to a severe spondylometaphyseal dysplasia with neonatal fractures, long-bone deformities, and short stature. In addition, neurological manifestations occur in some patients. SGMS2 encodes sphingomyelin synthase 2 (SMS2), an enzyme involved in the production of sphingomyelin (SM). This review describes the biochemical structure of SM, SM metabolism, and their molecular actions in skeletal and neural tissue. We postulate how disrupted SM gradient can influence bone formation and how animal models may facilitate a better understanding of SGMS2-related osteoporosis.


Asunto(s)
Nervio Facial , Osteoporosis , Transferasas (Grupos de Otros Fosfatos Sustitutos) , Animales , Niño , Humanos , Recién Nacido , Nervio Facial/metabolismo , Nervio Facial/patología , Osteoporosis/complicaciones , Osteoporosis/patología , Parálisis , Cráneo/metabolismo , Esfingomielinas/metabolismo , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
2.
Front Mol Biosci ; 9: 1032026, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36465561

RESUMEN

Background: Various skeletal disorders display defects in osteoblast development and function. An in vitro model can help to understand underlying disease mechanisms. Currently, access to appropriate starting material for in vitro osteoblastic studies is limited. Native osteoblasts and their progenitors, the bone marrow mesenchymal stem cells, (MSCs) are problematic to isolate from affected patients and challenging to expand in vitro. Human dermal fibroblasts in vitro are a promising substitute source of cells. Method: We developed an in vitro culturing technique to transdifferentiate fibroblasts into osteoblast-like cells. We obtained human fibroblasts from forearm skin biopsy and differentiated them into osteoblast-like cells with ß-glycerophosphate, ascorbic acid, and dexamethasone treatment. Osteoblastic phenotype was confirmed by staining for alkaline phosphatase (ALP), calcium and phosphate deposits (Alizarin Red, Von Kossa) and by a multi-omics approach (transcriptomic, proteomic, and phosphoproteomic analyses). Result: After 14 days of treatment, both fibroblasts and MSCs (reference cells) stained positive for ALP together with a significant increase in bone specific ALP (p = 0.04 and 0.004, respectively) compared to untreated cells. At a later time point, both cell types deposited minerals, indicating mineralization. In addition, fibroblasts and MSCs showed elevated expression of several osteogenic genes (e.g. ALPL, RUNX2, BMPs and SMADs), and decreased expression of SOX9. Ingenuity Pathways Analysis of RNA sequencing data from fibroblasts and MSCs showed that the osteoarthritis pathway was activated in both cell types (p_adj. = 0.003 and 0.004, respectively). Discussion: These data indicate that our in vitro treatment induces osteoblast-like differentiation in fibroblasts and MSCs, producing an in vitro osteoblastic cell system. This culturing system provides an alternative tool for bone biology research and skeletal tissue engineering.

3.
JBMR Plus ; 5(11): e10537, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34761145

RESUMEN

Pathological variants in SGMS2, encoding sphingomyelin synthase 2 (SMS2), result in a rare autosomal dominant skeletal disorder with cranial doughnut lesions. The disease manifests as early-onset osteoporosis or a more severe skeletal dysplasia with low bone mineral density, frequent fractures, long-bone deformities, and multiple sclerotic cranial lesions. The exact underlying molecular features and skeletal consequences, however, remain elusive. This study investigated bone tissue characteristics in two adult males with a heterozygous SGMS2 mutation p.Arg50* and significant bone fragility. Transiliac bone biopsy samples from both (patient 1: 61 years; patient 2: 29 years) were analyzed by bone histomorphometry, confocal laser scanning microscopy, and quantitative backscattered electron imaging (qBEI). Bone histomorphometry portrayed largely normal values for structural and turnover parameters, but in both patient 1 and patient 2, respectively, osteoid thickness (-1.80 SD, -1.37 SD) and mineralizing surface (-1.03 SD, -2.73 SD) were reduced and osteoid surface increased (+9.03 SD, +0.98 SD), leading to elevated mineralization lag time (+8.16 SD, +4.10 SD). qBEI showed low and heterogeneous matrix mineralization (CaPeak -2.41 SD, -3.72 SD; CaWidth +7.47 SD, +4.41 SD) with a chaotic arrangement of collagenous fibrils under polarized light. Last, osteocyte lacunae appeared abnormally large and round in shape and the canalicular network severely disturbed with short-spanned canaliculi lacking any orderliness or continuity. Taken together, these data underline a central role for functional SMS2 in bone matrix organization and mineralization, lacunocanalicular network, and in maintaining skeletal strength and integrity. These data bring new knowledge on changes in bone histology resulting from abnormal sphingomyelin metabolism and aid en route to better understanding of sphingolipid-related skeletal disorders. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...