Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Chemphyschem ; 24(19): e202300317, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37442814

RESUMEN

Novel highly selective synthesis techniques have enable the production of atomically precise monodisperse metal clusters (AMCs) of subnanometer size. These AMCs exhibit 'molecule-like' structures that have distinct physical and chemical properties, significantly different from those of nanoparticles and bulk material. In this work, we study copper pentamer Cu5 clusters as model AMCs by applying both density functional theory (DFT) and high-level (wave-function-based) ab initio methods, including those which are capable of accounting for the multi-state multi-reference character of the wavefunction at the conical intersection (CI) between different electronic states and augmenting the electronic basis set till achieving well-converged energy values and structures. After assessing the accuracy of a high-level multi-multireference ab initio protocol for the well-known Cu3 case, we apply it to demonstrate that bypiramidal Cu5 clusters are distorted Jahn-Teller (JT) molecules. The method is further used to evaluate the accuracy of single-reference approaches, finding that the coupled cluster singles and doubles and perturbative triples CCSD(T) method delivers the results closer to our ab initio predictions and that dispersion-corrected DFT can outperform the CCSD method. Finally, we discuss how JT effects and, more generally, conical intersections, are intimately connected to the fluxionality of AMCs, giving them a 'floppy' character that ultimately facilitates their interaction with environmental molecules and thus enhances their functioning as catalysts.

2.
J Phys Chem C Nanomater Interfaces ; 124(30): 16680-16688, 2020 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-32765801

RESUMEN

The temperature-induced structural changes of Fe-, Co-, and Ni-Au core-shell nanoparticles with diameters around 5 nm are studied via atomically resolved transmission electron microscopy. We observe structural transitions from local toward global energy minima induced by elevated temperatures. The experimental observations are accompanied by a computational modeling of all core-shell particles with either centralized or decentralized core positions. The embedded atom model is employed and further supported by density functional theory calculations. We provide a detailed comparison of vacancy formation energies obtained for all materials involved in order to explain the variations in the restructuring processes which we observe in temperature-programmed TEM studies of the particles.

3.
J Phys Chem C Nanomater Interfaces ; 123(37): 23064-23074, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31598186

RESUMEN

In this work, we explore the decomposition of CO2 on unsupported and TiO2-supported Cu5 clusters via computational modeling, using both finite cluster and periodic slab structures of the rutile TiO2(110) surface. While the energy needed for C=O bond breaking is already significantly reduced upon adsorption onto the unsupported metal catalyst (it drops from 7.8 to 1.3 eV), gas desorption before bond activation is still the inevitable outcome due to the remaining barrier height even at 0 K. However, when the Cu5 cluster itself is supported on TiO2, reactant and product adsorption is strongly enhanced, the barrier for bond breaking is further reduced, and a spontaneous decomposition of the molecule is predicted. This finding is linked to our previous work on charge-transfer processes in the Cu5-TiO2 system triggered by solar photons, since a combination of both phenomena at suitable temperatures would allow for a photoinduced activation of CO2 by sunlight.

4.
J Mater Chem A Mater ; 7(13): 7489-7500, 2019 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-31007927

RESUMEN

The decoration of semiconductors with subnanometer-sized clusters of metal atoms can have a strong impact on the optical properties of the support. The changes induced differ greatly from effects known for their well-studied, metallic counterparts in the nanometer range. In this work, we study the deposition of Cu5 clusters on a TiO2 surface and investigate their influence on the photon-absorption properties of TiO2 nanoparticles via the computational modeling of a decorated rutile TiO2 (110) surface. Our findings are further supported by selected experiments using diffuse reflectance and X-ray absorption spectroscopy. The Cu5 cluster donates an electron to TiO2, leading to the formation of a small polaron Ti3+ 3d1 state and depopulation of Cu(3d) orbitals, successfully explaining the absorption spectroscopy measurements at the K-edge of copper. A monolayer of highly stable and well fixated Cu5 clusters is formed, which not only enhances the overall absorption, but also extends the absorption profile into the visible region of the solar spectrum via direct photo-induced electron transfer and formation of a charge-separated state.

5.
J Phys Chem C Nanomater Interfaces ; 123(44): 27064-27072, 2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-33101568

RESUMEN

An ab initio study of the interaction of O2, the most abundant radical and oxidant species in the atmosphere, with a Cu5 cluster, a new generation atomic metal catalyst, is presented. The open-shell nature of the reactant species is properly accounted for by using the multireference perturbation theory, allowing the experimentally confirmed resistivity of Cu5 clusters toward oxidation to be investigated. Approximate reaction pathways for the transition from physisorption to chemisorption are calculated for the interaction of O2 with quasi-iso-energetic trapezoidal planar and trigonal bipyramidal structures. Within the multireference approach, the transition barrier for O2 activation can be interpreted as an avoided crossing between adiabatic states (neutral and ionic), which provides new insights into the charge-transfer process and gives better estimates for this hard to localize and therefore often neglected first intermediate state. For Cu5 arranged in a bipyramidal structure, the O-O bond cleavage is confirmed as the rate-determining step. However, for planar Cu5, the high energy barrier for O2 activation, related to a very pronounced avoided crossing when going from physisorption to chemisorption, determines the reactivity in this case.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...