RESUMEN
Pediatric patients with high-risk neuroblastoma often relapse with chemotherapy-resistant, incurable disease. Relapsed neuroblastomas harbor chemo-resistant mesenchymal tumor cells and increased expression/activity of the transcriptional co-regulator, the Yes-Associated Protein (YAP). Patients with relapsed neuroblastoma are often treated with immunotherapy such as the anti-GD2 antibody, dinutuximab, in combination with chemotherapy. We have previously shown that YAP mediates both chemotherapy and MEK inhibitor resistance in relapsed RAS mutated neuroblastoma and so posited that YAP might also be involved in anti-GD2 antibody resistance. We now show that YAP genetic inhibition significantly enhances sensitivity of mesenchymal neuroblastomas to dinutuximab and gamma delta (γδ) T cells both in vitro and in vivo. Mechanistically, YAP inhibition induces increased GD2 cell surface expression through upregulation of ST8SIA1, the gene encoding GD3 synthase and the rate-limiting enzyme in GD2 biosynthesis. The mechanism of ST8SIA1 suppression by YAP is independent of PRRX1 expression, a mesenchymal master transcription factor, suggesting YAP may be the downstream effector of mesenchymal GD2 resistance. These results therefore identify YAP as a therapeutic target to augment GD2 immunotherapy responses in patients with neuroblastoma.
Asunto(s)
Neuroblastoma , Sialiltransferasas , Proteínas Señalizadoras YAP , Humanos , Regulación hacia Abajo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/uso terapéutico , Inmunoterapia/métodos , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Animales , Sialiltransferasas/metabolismoRESUMEN
GD2-targeting immunotherapies have improved survival in children with neuroblastoma, yet on-target, off-tumor toxicities can occur and a subset of patients cease to respond. The majority of neuroblastoma patients who receive immunotherapy have been previously treated with cytotoxic chemotherapy, making it paramount to identify neuroblastoma-specific antigens that remain stable throughout standard treatment. Cell surface glycoproteomics performed on human-derived neuroblastoma tumors in mice following chemotherapy treatment identified protein tyrosine kinase 7 (PTK7) to be abundantly expressed. Furthermore, PTK7 shows minimal expression on pediatric-specific normal tissues. We developed an anti-PTK7 chimeric antigen receptor (CAR) and find PTK7 CAR T cells specifically target and kill PTK7-expressing neuroblastoma in vitro. In vivo, human/murine binding PTK7 CAR T cells regress aggressive neuroblastoma metastatic mouse models and prolong survival with no toxicity. Together, these data demonstrate preclinical efficacy and tolerability for targeting PTK7 and support ongoing investigations to optimize PTK7-targeting CAR T cells for neuroblastoma.
Asunto(s)
Neuroblastoma , Receptores Quiméricos de Antígenos , Humanos , Niño , Animales , Ratones , Neuroblastoma/terapia , Neuroblastoma/patología , Inmunoterapia , Receptores Quiméricos de Antígenos/genética , Proteínas Tirosina QuinasasRESUMEN
γδ T lymphocytes represent an emerging class of cellular immunotherapy with preclinical promise to treat cancer, notably neuroblastoma. The innate-like immune cell subset demonstrates inherent cytoxicity toward tumor cells independent of MHC recognition, enabling allogeneic administration of healthy donor-derived γδ T cell therapies. A current limitation is the substantial interindividual γδ T cell expansion variation among leukocyte collections. Overcoming this limitation will enable realization of the full potential of allogeneic γδ T-based cellular therapy. Here, we characterize γδ T cell expansions from healthy adult donors and observe that highly potent natural killer (NK) lymphocytes expand with γδ T cells under zoledronate and IL-2 stimulation. The presence of NK cells correlates with both the expansion potential of γδ T cells and the overall potency of the γδ T cell therapy. However, the potency of the cell therapy in combination with an antibody-based immunotherapeutic, dinutuximab, appears to be independent of γδ T/NK cell content both in vitro and in vivo, which minimizes the implication of interindividual expansion differences toward efficacy. Collectively, these studies highlight the utility of maintaining the NK cell population within expanded γδ T cell therapies and suggest a synergistic action of combined innate cell immunotherapy toward neuroblastoma.
Asunto(s)
Neuroblastoma , Receptores de Antígenos de Linfocitos T gamma-delta , Proliferación Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Humanos , Inmunoterapia , Neuroblastoma/terapiaRESUMEN
The advent of high-throughput, next-generation sequencing methods combined with advances in computational biology and bioinformatics have greatly accelerated discovery within biomedical research. This "post-genomics" era has ushered in powerful approaches allowing one to quantify RNA transcript and protein abundance for every gene in the genome - often for multiple conditions. Herein, we chronicle how the post-genomics era has advanced our overall understanding of parasitic nematodes through transcriptomics and proteomics and highlight some of the important advances made in each major nematode clade. We primarily focus on organisms relevant to human health, given that nematode infections significantly impact disability-adjusted life years (DALY) scores within the developing world, but we also discuss organisms of veterinary importance as well as those used as laboratory models. As such, we envision that this review will serve as a comprehensive resource for those seeking a better understanding of basic parasitic nematode biology as well as those interested in targets for vaccination and pharmacological intervention.
Asunto(s)
Perfilación de la Expresión Génica/métodos , Genómica/métodos , Interacciones Huésped-Patógeno , Nematodos/química , Nematodos/genética , Proteómica/métodos , Animales , Perfilación de la Expresión Génica/tendencias , Genómica/tendencias , Humanos , Proteómica/tendenciasRESUMEN
The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 µM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 µM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24-48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 µM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 µM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest; and that endogenous DA production regulates iL3 activation.