Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-39000673

RESUMEN

The aim of the study was to develop casein-fucoidan composite nanostructures through the method of polyelectrolyte complexation and subsequent spray drying. To determine the optimal parameters for the preparation of the composite structures and to investigate the influence of the production and technological parameters on the main structural and morphological characteristics of the obtained structures, 3(k-p) fractional factorial design was applied. The independent variables (casein to fucoidan ratio, glutaraldehyde concentration, and spray intensity) were varied at three levels (low, medium, and high) and their effect on the yield, the average particle size, and the zeta potential were evaluated statistically. Based on the obtained results, models C1F1G1Sp.30, C1F1G2Sp.40, and C1F1G3Sp.50, which have an average particle size ranging from (0.265 ± 0.03) µm to (0.357 ± 0.02) µm, a production yield in the range (48.9 ± 2.9) % to (66.4 ± 2.2) %, and a zeta potential varying from (-20.12 ± 0.9) mV to (-25.71 ± 1.0) mV, were selected as optimal for further use as drug delivery systems.

2.
Gels ; 10(3)2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38534607

RESUMEN

Chitosan, being a biocompatible and mucoadhesive polysaccharide, is one of the most preferred hydrogel-forming materials for drug delivery. The objectives of the present study are to obtain spray-dried microparticles based on low-molecular-weight chitosan and study their potential application as cargo systems for the orally active drug benzydamine hydrochloride. Three types of particles are obtained: raw chitosan particles (at three different concentrations), cross-linked with sodium tripolyphosphate (NaTPP) particles (at three different chitosan:NaTPP ratios), and particles coated with mannitol (at three different chitosan:mannitol ratios), all of them in the size range between 1 and 10 µm. Based on the loading efficiency and the yields of the formulated hydrogel particles, one model of each type is chosen for further investigation of the effect of the cross-linker or the excipient on the properties of the gel structures. The morphology of both empty and benzydamine hydrochloride-loaded chitosan particles was examined by scanning electron microscopy, and it was quite regular and spherical. Interactions and composition in the samples are investigated by Fourier-transformed infrared spectroscopy. The thermal stability and phase state of the drug and drug-containing polymer matrixes were tested by differential scanning calorimetry and X-ray powdered diffraction, revealing that the drug underwent a phase transition. A drug release kinetics study of the chosen gel-based structures in simulated saliva buffer (pH = 6.8) and mathematical modeling of the process were performed, indicating the Weibull model as the most appropriate one.

3.
Cureus ; 16(2): e54671, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38524031

RESUMEN

Parkinson's disease (PD) is a progressive neurodegenerative disease that affects approximately 1% of people over the age of 60 and 5% of those over the age of 85. Current drugs for Parkinson's disease mainly affect the symptoms and cannot stop its progression. Nanotechnology provides a solution to address some challenges in therapy, such as overcoming the blood-brain barrier (BBB), adverse pharmacokinetics, and the limited bioavailability of therapeutics. The reformulation of drugs into nanoparticles (NPs) can improve their biodistribution, protect them from degradation, reduce the required dose, and ensure target accumulation. Furthermore, appropriately designed nanoparticles enable the combination of diagnosis and therapy with a single nanoagent. In recent years, gold nanoparticles (AuNPs) have been studied with increasing interest due to their intrinsic nanozyme activity. They can mimic the action of superoxide dismutase, catalase, and peroxidase. The use of 13-nm gold nanoparticles (CNM-Au8®) in bicarbonate solution is being studied as a potential treatment for Parkinson's disease and other neurological illnesses. CNM-Au8® improves remyelination and motor functions in experimental animals. Among the many techniques for nanoparticle synthesis, green synthesis is increasingly used due to its simplicity and therapeutic potential. Green synthesis relies on natural and environmentally friendly materials, such as plant extracts, to reduce metal ions and form nanoparticles. Moreover, the presence of bioactive plant compounds on their surface increases the therapeutic potential of these nanoparticles. The present article reviews the possibilities of nanoparticles obtained by green synthesis to combine the therapeutic effects of plant components with gold.

4.
Polymers (Basel) ; 15(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37688241

RESUMEN

Micro- and nanotechnologies have been intensively studied in recent years as novel platforms for targeting and controlling the delivery of various pharmaceutical substances. Microparticulate drug delivery systems for oral, parenteral, or topical administration are multiple unit formulations, considered as powerful therapeutic tools for the treatment of various diseases, providing sustained drug release, enhanced drug stability, and precise dosing and directing the active substance to specific sites in the organism. The properties of these pharmaceutical formulations are highly dependent on the characteristics of the polymers used as drug carriers for their preparation. Starch and cellulose are among the most preferred biomaterials for biomedical applications due to their biocompatibility, biodegradability, and lack of toxicity. These polysaccharides and their derivatives, like dextrins (maltodextrin, cyclodextrins), ethylcellulose, methylcellulose, hydroxypropyl methylcellulose, carboxy methylcellulose, etc., have been widely used in pharmaceutical technology as excipients for the preparation of solid, semi-solid, and liquid dosage forms. Due to their accessibility and relatively easy particle-forming properties, starch and cellulose are promising materials for designing drug-loaded microparticles for various therapeutic applications. This study aims to summarize some of the basic characteristics of starch and cellulose derivatives related to their potential utilization as microparticulate drug carriers in the pharmaceutical field.

5.
Biomedicines ; 11(8)2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37626694

RESUMEN

Direct nose-to-brain drug delivery offers the opportunity to treat central nervous system disorders more effectively due to the possibility of drug molecules reaching the brain without passing through the blood-brain barrier. Such a delivery route allows the desired anatomic site to be reached while ensuring drug effectiveness, minimizing side effects, and limiting drug losses and degradation. However, the absorption of intranasally administered entities is a complex process that considerably depends on the interplay between the characteristics of the drug delivery systems and the nasal mucosa. Various preclinical models (in silico, in vitro, ex vivo, and in vivo) are used to study the transport of drugs after intranasal administration. The present review article attempts to summarize the different computational and experimental models used so far to investigate the direct delivery of therapeutic agents or colloidal carriers from the nasal cavity to the brain tissue. Moreover, it provides a critical evaluation of the data available from different studies and identifies the advantages and disadvantages of each model.

6.
Polymers (Basel) ; 15(15)2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37571136

RESUMEN

Fucoidan belongs to the family of marine sulfated, L-fucose-rich polysaccharides found in the cell wall matrix of various brown algae species. In the last few years, sulfated polysaccharides have attracted the attention of researchers due to their broad biological activities such as anticoagulant, antithrombotic, antidiabetic, immunomodulatory, anticancer and antiproliferative effects. Recently the application of fucoidan in the field of pharmaceutical technology has been widely investigated. Due to its low toxicity, biocompatibility and biodegradability, fucoidan plays an important role as a drug carrier for the formulation of various drug delivery systems, especially as a biopolymer with anticancer activity, used for targeted delivery of chemotherapeutics in oncology. Furthermore, the presence of sulfate residues with negative charge in its structure enables fucoidan to form ionic complexes with oppositely charged molecules, providing relatively easy structure-forming properties in combination with other polymers. The aim of the present study was to overview essential fucoidan characteristics, related to its application in the development of pharmaceutical formulations as a single drug carrier or in combinations with other polymers. Special focus was placed on micro- and nanosized drug delivery systems with polysaccharides and their application in the field of oncology.

7.
Biomedicines ; 11(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37371688

RESUMEN

Chronic, multifactorial illnesses of the gastrointestinal tract include inflammatory bowel diseases. One of the greatest methods for regulated medicine administration in a particular region of inflammation is the nanoparticle system. Silver nanoparticles (Ag NPs) have been utilized as drug delivery systems in the pharmaceutical industry. The goal of the current study is to synthesize drug-loaded Ag NPs using a previously described 3-methyl-1-phenylbutan-2-amine, as a mebeverine precursor (MP). Methods: A green, galactose-assisted method for the rapid synthesis and stabilization of Ag NPs as a drug-delivery system is presented. Galactose was used as a reducing and capping agent forming a thin layer encasing the nanoparticles. Results: The structure, size distribution, zeta potential, surface charge, and the role of the capping agent of drug-loaded Ag NPs were discussed. The drug release of the MP-loaded Ag NPs was also investigated. The Ag NPs indicated a very good drug release between 80 and 85%. Based on the preliminary results, Ag NPs might be a promising medication delivery system for MP and a useful treatment option for inflammatory bowel disease. Therefore, future research into the potential medical applications of the produced Ag NPs is necessary.

8.
Biomedicines ; 11(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37239161

RESUMEN

The present work is focused on the preparation of an optimal model of poly-ε-caprolactone nanoparticles as potential carriers for nasal administration of idebenone. A solvent/evaporation technique was used for nanoparticle preparation. Poly-ε-caprolactone with different molecular weights (14,000 and 80,000 g/mol) was used. Polysorbate 20 and Poloxamer 407, alone and in combination, were used as emulsifiers at different concentrations to obtain a stable formulation. The nanoparticles were characterized using dynamic light scattering, SEM, TEM, and FTIR. The resulting structures were spherical in shape and their size distribution depended on the type of emulsifier. The average particle size ranged from 188 to 628 nm. The effect of molecular weight and type of emulsifier was established. Optimal models of appropriate size for nasal administration were selected for inclusion of idebenone. Three models of idebenone-loaded nanoparticles were developed and the effect of molecular weight on the encapsulation efficiency was investigated. Increased encapsulation efficiency was found when poly-ε-caprolactone with lower molecular weight was used. The molecular weight also affected the drug release from the nanostructures. Dissolution study data were fitted into various kinetic models and the Korsmeyer-Peppas model was found to be indicative of the release mechanism of idebenone.

9.
Pharmaceutics ; 15(2)2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36839793

RESUMEN

The aim of this study was to develop casein-based nanoscale carriers as a potential delivery system for daunorubicin, as a pH-responsive targeting tool for acute lymphocytic leukemia. A coacervation technique followed by nano spray-drying was used for the preparation of drug-loaded casein nanoparticles. Four batches of drug-loaded formulations were developed at varied drug-polymer ratios using a simple coacervation technique followed by spray-drying. They were further characterized using scanning electron microscopy, dynamic light scattering, FTIR spectroscopy, XRD diffractometry, and differential scanning calorimetry. Drug release was investigated in different media (pH 5 and 7.4). The cytotoxicity of the daunorubicin-loaded nanoparticles was compared to that of the pure drug. The influence of the polymer-to-drug ratio on the nanoparticles' properties such as their particle size, surface morphology, production yield, drug loading, entrapment efficiency, and drug release behavior was studied. Furthermore, the cytotoxicity of the drug-loaded nanoparticles was investigated confirming their potential as carriers for daunorubicin delivery.

10.
Biomedicines ; 10(7)2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35885011

RESUMEN

Neurodegenerative disorders (NDs) have become a serious health problem worldwide due to the rapid increase in the number of people that are affected and the constantly aging population. Among all NDs, Alzheimer's and Parkinson's disease are the most common, and many efforts have been made in the development of effective and reliable therapeutic strategies. The intranasal route of drug administration offers numerous advantages, such as bypassing the blood-brain barrier and providing a direct entrance to the brain through the olfactory and trigeminal neurons. The present review summarizes the available information on recent advances in micro- and nanoscale nose-to-brain drug-delivery systems as a novel strategy for the treatment of Alzheimer's and Parkinson's disease. Specifically, polymer- and lipid-base micro- and nanoparticles have been studied as a feasible approach to increase the brain bioavailability of certain drugs. Furthermore, nanocomposites are discussed as a suitable formulation for administration into the nasal cavity.

11.
Polymers (Basel) ; 14(4)2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35215645

RESUMEN

The goal of this research was to study the potential of polyelectrolyte multilayers as buccal dosage forms for drug delivery and to investigate how the properties of the drugs impact the overall performance of the delivery system. Multilayer films based on the polyelectrolyte interaction between casein and chitosan were developed using benzydamine, tolfenamic acid and betahistine as model drugs. The samples were characterized for surface pH, moisture content and moisture absorption, swelling behavior and mucoadhesion. Additionally, surface morphology was investigated, as well as the drugs' physical state after incorporation in the multilayer films. The samples proved to be non-irritant (pH was within the physiological range), physically stable (moisture content and moisture absorption below 5%) and mucoadhesive, adsorbing from 60 to 70% mucin. The release behavior corelated to the swelling index profiles of the samples and was strongly dependent on the drug solubility. The developed multilayer films appeared to be an optimum delivery system for sparingly soluble drugs due to the high drug loading achieved.

12.
Materials (Basel) ; 15(4)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35207872

RESUMEN

This research aims to investigate the properties of nano- and micro-sized casein hydrogels crosslinked by sodium tripolyphosphate as drug delivery systems. Benzydamine hydrochloride was chosen as a model hydrophilic drug. The gels were synthesized by varying different parameters: casein concentration, casein/crosslinking ratio, and addition of ethanol as a co-solvent. The electrostatic attractive interactions between the casein and the sodium tripolyphosphate were confirmed by FTIR spectroscopy. The particle sizes was determined by dynamic light scattering and varied in the range between several hundred nanometers and several microns. The yield of the gelation process was high for all investigated samples and varied between 55.3% and 78.3%. The encapsulation efficiency of the particles was strongly influenced by the casein concentration and casein/crosslinker ratio and its values were between 4.6% and 22.4%. The release study confirmed that casein particles are useful as benzydamine carriers and ensured prolonged release over 72 h.

13.
Molecules ; 26(24)2021 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-34946549

RESUMEN

Essential oils have been studied for various applications, including for therapeutic purposes. There is extensive literature regarding their properties; however, their low stability limits their application. Generally, the microencapsulation of essential oils allows enhanced stability and enables the potential incorporation in solid dosage forms. Lavender and peppermint oils were encapsulated in microparticles using a spray-drying technique under optimized conditions: 170 °C temperature, 35 m3/h aspiration volume flow, and 7.5 mL/min feed flow. Arabic gum and maltodextrin were used as coating polymers individually in varying concentrations from 5 to 20% (w/v) and in combination. The microparticles were studied for morphology, particle size, oil content, and flowability. The formulated powder particles showed a high yield of 71 to 84%, mean diameter 2.41 to 5.99 µm, and total oil content of up to 10.80%. The results showed that both the wall material type and concentration, as well as the type of essential oil, significantly affected the encapsulation process and the final particle characteristics. Our study has demonstrated that the encapsulation of lavender and peppermint oils in Arabic gum/maltodextrin microparticles by spray-drying represents a feasible approach for the conversion of liquids into solids regarding their further use in powder technology.


Asunto(s)
Desecación , Composición de Medicamentos , Lavandula/química , Mentha piperita/química , Aceites Volátiles/química , Cápsulas
14.
Polymers (Basel) ; 13(24)2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34960907

RESUMEN

The aim of the present work was to optimize the process parameters of the nano spray drying technique for the formulation of benzydamine-loaded casein nanoparticles and to investigate the effect of some process variables on the structural and morphological characteristics and release behavior. The obtained particles were characterized in terms of particle size and size distribution, surface morphology, production yield and encapsulation efficiency, drug-polymer compatibility, etc., using dynamic light scattering, scanning electron microscopy, differential scanning calorimetry, and Fourier transformed infrared spectroscopy. Production yields of the blank nanoparticles were significantly influenced by the concentration of both casein and the crosslinking agent. The formulated drug-loaded nanoparticles had an average particle size of 135.9 nm to 994.2 nm. Drug loading varied from 16.02% to 57.41% and the encapsulation efficiency was in the range 34.61% to 78.82%. Our study has demonstrated that all the investigated parameters depended greatly on the polymer/drug ratio and the drug release study confirmed the feasibility of the developed nanocarriers for prolonged delivery of benzydamine.

15.
Polymers (Basel) ; 13(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34641160

RESUMEN

The intensive development of micro- and nanotechnologies in recent years has offered a wide horizon of new possibilities for drug delivery in dentistry. The use of polymeric drug carriers turned out to be a very successful technique for formulating micro- and nanoparticles with controlled or targeted drug release in the oral cavity. Such innovative strategies have the potential to provide an improved therapeutic approach to prevention and treatment of various oral diseases not only for adults, but also in the pediatric dental practice. Due to their biocompatibility, biotolerance and biodegradability, naturally occurring polysaccharides like chitosan, alginate, pectin, dextran, starch, etc., are among the most preferred materials for preparation of micro- and nano-devices for drug delivery, offering simple particle-forming characteristics and easily tunable properties of the formulated structures. Their low immunogenicity and low toxicity provide an advantage over most synthetic polymers for the development of pediatric formulations. This review is focused on micro- and nanoscale polysaccharide biomaterials as dental drug carriers, with an emphasis on their potential application in pediatric dentistry.

16.
Pharmaceutics ; 13(10)2021 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-34683904

RESUMEN

Despite the progress made in the fight against the COVID-19 pandemic, it still poses dramatic challenges for scientists around the world. Various approaches are applied, including repurposed medications and alternative routes for administration. Several vaccines have been approved, and many more are under clinical and preclinical investigation. This review aims to systemize the available information and to outline the key therapeutic strategies for COVID-19, based on the nasal route of administration.

17.
Folia Med (Plovdiv) ; 61(3): 426-434, 2019 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32337930

RESUMEN

BACKGROUND: Taste masking of bitter or unpleasant drugs is an important prerequisite to improve patient compliance, especially for children and elderly patients. We aimed at obtaining taste-masked microparticles intended for incorporation into orodispersible tablets (ODTs). We selected the precipitation method using enalapril maleate (ENA) as a model bitter-tasting drug and Eudragit EPO® as a pH sensitive polymer. AIM: The aim of this study was to obtain microparticles with enalapril maleate by the precipitation method in order to mask the bitter taste of the drug. MATERIALS AND METHODS: Nine models of enalapril maleate ­ Eudragit EPO® microparticles were prepared by the precipitation method at varied drug-polymer ratios. The models were characterized in terms of size, shape, production yield, drug content, encapsulation efficiency and moisture content. Fourier-transformed infrared spectroscopy, powder X-ray diffraction and differential scanning calorimetry were used to analyze possible interactions in the complex. In vitro drug release in simulated salivary fluid and in vivo taste evaluation in rats were realized to prove taste masking. RESULTS: The particle size distribution varied from 266.9 µm to 410.9 µm. The shape of the resulting particles was irregular. The production yield varied from 23.6% to 78.2%. The drug content ranged between 2.3% to 4.8%, encapsulation efficiency increased from 1.6% to 9.0%. In vitro drug release data indicated significant taste masking. CONCLUSION: Some of the obtained microparticles by the precipitation method showed satisfactory taste masking efficiency, which proved the taste masking feasibility of this method.


Asunto(s)
Enalapril/química , Gusto , Precipitación Química , Liberación de Fármacos , Comprimidos
18.
Eur J Pharm Sci ; 123: 387-394, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30077710

RESUMEN

Spray-dried chitosan microparticles have been widely exploited as vehicles for mucosal drug delivery. Despite their advantages as pharmaceutical formulations, one of the major challenges is achieving sustained drug release, which would diminish toxicity and dosage frequency. The aim of this study was to formulate mucoadhesive glutaraldehyde cross-linked chitosan microparticles loaded with doxylamine succinate and pyridoxine hydrochloride as potential nasal drug delivery systems with sustained release. Microparticle models were formulated via spray-drying technique, using glutaraldehyde in different concentrations (0.1-1.0 mg/mL) as a cross-linking agent for chitosan. The obtained particles were with spherical shape, smooth surface and median diameter of 4 µm. The drug entrapment efficiency was high (80.47%-94.25%), indicating a tendency to decrease at higher glutaraldehyde concentrations. FTIR data demonstrated that there were no chemical interactions between glutaraldehyde and the drugs. The in vitro studies showed that the cross-linking process substantially limited particles swelling. The cross-linked particles exhibited sustained drug release characteristics at pH 6.8 over a period of 5 h with an initial burst-effect in the first 30 min. Drug release followed Korsmeyer-Peppas kinetics. Although a decrease of the particles mucoadhesive properties was observed after modification, all cross-linked formulations demonstrated high in vitro adsorption of mucin. The proposed models of mucoadhesive microsphere with sustained drug release are a perspective ground for further development of a novel delivery system for nasal administration of doxylamine and pyridoxine.


Asunto(s)
Antieméticos/química , Química Farmacéutica/métodos , Quitosano/química , Reactivos de Enlaces Cruzados/química , Diciclomina/química , Doxilamina/química , Portadores de Fármacos , Glutaral/química , Piridoxina/química , Adhesividad , Administración Intranasal , Antieméticos/administración & dosificación , Preparaciones de Acción Retardada , Diciclomina/administración & dosificación , Doxilamina/administración & dosificación , Combinación de Medicamentos , Composición de Medicamentos , Liberación de Fármacos , Estudios de Factibilidad , Mucinas Gástricas/química , Cinética , Microesferas , Piridoxina/administración & dosificación , Solubilidad
19.
Acta Pharm ; 68(1): 61-73, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29453910

RESUMEN

The prediction power of partial least squares (PLS) and multivariate curve resolution-alternating least squares (MCR-ALS) methods have been studied for simultaneous quantitative analysis of the binary drug combination - doxylamine succinate and pyridoxine hydrochloride. Analysis of first-order UV overlapped spectra was performed using different PLS models - classical PLS1 and PLS2 as well as partial robust M-regression (PRM). These linear models were compared to MCR-ALS with equality and correlation constraints (MCR-ALS-CC). All techniques operated within the full spectral region and extracted maximum information for the drugs analysed. The developed chemometric methods were validated on external sample sets and were applied to the analyses of pharmaceutical formulations. The obtained statistical parameters were satisfactory for calibration and validation sets. All developed methods can be successfully applied for simultaneous spectrophotometric determination of doxylamine and pyridoxine both in laboratory-prepared mixtures and commercial dosage forms.


Asunto(s)
Doxilamina/análogos & derivados , Piridoxina/química , Calibración , Doxilamina/química , Composición de Medicamentos/métodos , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Espectrofotometría/métodos
20.
Acta Pharm ; 68(3): 373-380, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31259694

RESUMEN

The aim of this study is to evaluate the antihyperalgesic and antinociceptive effects of two formulations containing peat water extracts using a model of carrageenan-induced hyperalgesia, combined with a test with a mechanical stimulus, and a hot plate test. Rats were divided into seven groups (n = 6) and received local treatment with two peat formulations and two diclofenac formulations dissolved in carbopol gel and Wolff® basis creme, respectively. Carbopol gel, Wolff® basis creme and 0.9 % NaCl without tested substances were used as controls. Both peat formulations exerted an unambiguous antihyperalgesic effect 60 minutes after the treatment. In the hot plate test, the rats treated with the Wolff® basis creme peat formulation showed a tendency to prolonged latency on the first hour. The results could be explained by partial activation of peripheral α2-adrenoceptors and the possible COX-2 suppressive activity.


Asunto(s)
Analgésicos/farmacología , Diclofenaco/farmacología , Hiperalgesia/tratamiento farmacológico , Suelo/química , Resinas Acrílicas/química , Analgésicos/administración & dosificación , Animales , Carragenina/toxicidad , Inhibidores de la Ciclooxigenasa 2/administración & dosificación , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa/administración & dosificación , Inhibidores de la Ciclooxigenasa/farmacología , Diclofenaco/administración & dosificación , Modelos Animales de Enfermedad , Geles , Masculino , Ratas , Ratas Wistar , Receptores Adrenérgicos alfa 2/efectos de los fármacos , Receptores Adrenérgicos alfa 2/metabolismo , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...