Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Therm Biol ; 84: 103-110, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31466742

RESUMEN

This study aims to address if are there annual changes in the hair coat traits and skin morphology of hair sheep breeds raised in an equatorial semi-arid region? Coat and skin samples were taken from thirty Morada Nova (4 ±â€¯2 years old; red coat; ±SD) and twenty Santa Inês multiparous ewes (5 ±â€¯2 years old; brown and black coat; ±SD) every 3 months over a year. Hair coat traits included thickness (mm), density (number of hairs cm-2), length (mm), and diameter (mm), plus epidermal and dermal thickness (µm), sweat glands and blood capillaries area (µm cm-2) were determined. Means of solar irradiance and ambient air temperature were higher between September and December. Annual changes (P < 0.05) in hair density, diameter, length and thickness, as well as the skin blood capillaries and sweat gland area differed between breeds. The modifications on hair coat traits resulted in minor changes on the effective thermal conductivity of the hair coat surface both for Morada Nova and Santa Ines sheep. Nevertheless, it was clearly evident that the overall cutaneous thermal insulation for Morada Nova sheep was lowest in September that was coupled with lower hair density, coat thickness, and higher sweat gland and blood capillary area (P < 0.05). In conclusion, even in an equatorial region, phenotypic acclimatization on morphological traits of cutaneous surface and skin traits can modify the overall thermal insulation of sheep breeds.


Asunto(s)
Aclimatación , Pelaje de Animal/anatomía & histología , Ovinos/anatomía & histología , Piel/anatomía & histología , Animales , Capilares/anatomía & histología , Clima , Femenino , Fenotipo , Ovinos/fisiología , Luz Solar , Temperatura , Conductividad Térmica
2.
Int J Biometeorol ; 61(2): 217-225, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27387543

RESUMEN

The aim of the present study was to estimate the heat transfer through cutaneous and respiratory evaporation of dairy cows raised in tropical ambient conditions using simple environmental and physiological measures. Twenty-six lactating crossbred cows (7/8 Holstein-Gir) were used, 8 predominantly white and 18 predominantly black. The environmental variables air temperature, relative humidity, black globe temperature, and wind speed were measured. Respiratory rate and coat surface temperature were measured at 0700, 0900, 1100, 1300, and 1500 h. The environmental and physiological data were used to estimate heat loss by respiratory (ER) and cutaneous evaporation (EC). Results showed that there was variation (P < 0.01) for respiratory rate depending on the times of the day. The highest values were recorded at 1100, 1300, and 1500 h, corresponding to 66.85 ± 10.20, 66.98 ± 7.80, and 65.65 ± 6.50 breaths/min, respectively. Thus, the amount of heat transferred via respiration ranged from 19.21 to 29.42 W/m2. There was a variation from 31.6 to 38.8 °C for coat surface temperature; these values reflected a range of 55.52 to 566.83 W/m2 for heat transfer via cutaneous evaporation. However, throughout the day, the dissipation of thermal energy through the coat surface accounted for 87.9 % total loss of latent heat, and the remainder (12.1 %) was via the respiratory tract. In conclusion, the predictive models based on respiratory rate and coat surface temperature may be used to estimate the latent heat loss in dairy cows kept confined in tropical ambient conditions.


Asunto(s)
Regulación de la Temperatura Corporal , Bovinos/fisiología , Modelos Biológicos , Fenómenos Fisiológicos Respiratorios , Fenómenos Fisiológicos de la Piel , Animales , Femenino , Humedad , Frecuencia Respiratoria , Temperatura , Clima Tropical , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...