Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Metabolites ; 9(5)2019 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-31130652

RESUMEN

Non-alcoholic fatty liver disease (NAFLD), the leading cause of chronic liver disease, is associated with cognitive decline in middle-aged adults, but the mechanisms underlying this association are not clear. We hypothesized that NAFLD would unveil the appearance of brain hypoperfusion in association with altered plasma and brain lipid metabolism. To test our hypothesis, amyloid precursor protein/presenilin-1 (APP/PS1) transgenic mice were fed a standard diet or a high-fat, cholesterol and cholate diet, inducing NAFLD without obesity and hyperglycemia. The diet-induced NAFLD disturbed monounsaturated and polyunsaturated fatty acid (MUFAs, PUFAs) metabolism in the plasma, liver, and brain, and particularly reduced n-3 PUFAs levels. These alterations in lipid homeostasis were associated in the brain with an increased expression of Tnfα, Cox2, p21, and Nox2, reminiscent of brain inflammation, senescence, and oxidative stress. In addition, compared to wild-type (WT) mice, while brain perfusion was similar in APP/PS1 mice fed with a chow diet, NAFLD in APP/PS1 mice reveals cerebral hypoperfusion and furthered cognitive decline. NAFLD reduced plasma ß40- and ß42-amyloid levels and altered hepatic but not brain expression of genes involved in ß-amyloid peptide production and clearance. Altogether, our results suggest that in a mouse model of Alzheimer disease (AD) diet-induced NAFLD contributes to the development and progression of brain abnormalities through unbalanced brain MUFAs and PUFAs metabolism and cerebral hypoperfusion, irrespective of brain amyloid pathology that may ultimately contribute to the pathogenesis of AD.

2.
Hypertension ; 73(1): 217-228, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30571552

RESUMEN

A chronic and gradual increase in pulse pressure (PP) is associated with cognitive decline and dementia in older individuals, but the mechanisms remain ill-defined. We hypothesized that a chronic elevation of PP would cause brain microvascular endothelial mechanical stress, damage the neurovascular unit, and ultimately induce cognitive impairment in mice, potentially contributing to the progression of vascular dementia and Alzheimer disease. To test our hypothesis, male control wild-type mice and Alzheimer disease model APP/PS1 (amyloid precursor protein/presenilin 1) mice were exposed to a transverse aortic constriction for 6 weeks, creating a PP overload in the right carotid (ipsilateral). We show that the transverse aortic constriction procedure associated with high PP induces a cascade of vascular damages in the ipsilateral parenchymal microcirculation: in wild-type mice, it impairs endothelial dilatory and blood brain barrier functions and causes microbleeds, a reduction in microvascular density, microvascular cell death by apoptosis, leading to severe hypoperfusion and parenchymal cell senescence. These damages were associated with brain inflammation and a significant reduction in learning and spatial memories. In APP/PS1 mice, that endogenously display severe cerebral vascular dysfunctions, microbleeds, parenchymal inflammation and cognitive dysfunction, transverse aortic constriction-induced high PP further aggravates cerebrovascular damage, Aß (beta-amyloid) accumulation, and prevents learning. Our study, therefore, demonstrates that brain microvessels are vulnerable to a high PP and mechanical stress associated with transverse aortic constriction, promoting severe vascular dysfunction, disruption of the neurovascular unit, and cognitive decline. Hence, chronic elevated amplitude of the PP could contribute to the development and progression of vascular dementia including Alzheimer disease.


Asunto(s)
Enfermedad de Alzheimer , Lesión Encefálica Crónica , Encéfalo , Disfunción Cognitiva , Demencia Vascular , Microvasos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/fisiopatología , Péptidos beta-Amiloides/metabolismo , Animales , Presión Sanguínea/fisiología , Encéfalo/irrigación sanguínea , Encéfalo/metabolismo , Encéfalo/fisiopatología , Lesión Encefálica Crónica/complicaciones , Lesión Encefálica Crónica/fisiopatología , Circulación Cerebrovascular , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Demencia Vascular/metabolismo , Demencia Vascular/fisiopatología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Células Endoteliales/fisiología , Ratones , Microvasos/lesiones , Microvasos/fisiopatología
3.
Am J Physiol Heart Circ Physiol ; 314(6): H1214-H1224, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29451817

RESUMEN

Aging is a modern concept: human life expectancy has more than doubled in less than 150 yr in Western countries. Longer life span, however, reveals age-related diseases, including cerebrovascular diseases. The vascular system is a prime target of aging: the "wear and tear" of large elastic arteries exposed to a lifelong pulsatile pressure causes arterial stiffening by fragmentation of elastin fibers and replacement by stiffer collagen. This arterial stiffening increases in return the amplitude of the pulse pressure (PP), its wave penetrating deeper into the microcirculation of low-resistance, high-flow organs such as the brain. Several studies have associated peripheral arterial stiffness responsible for the sustained increase in PP, with brain microvascular diseases such as cerebral small vessel disease, cortical gray matter thinning, white matter atrophy, and cognitive dysfunction in older individuals and prematurely in hypertensive and diabetic patients. The rarefaction of white matter is also associated with middle cerebral artery pulsatility that is strongly dependent on PP and artery stiffness. PP and brain damage are likely associated, but the sequence of mechanistic events has not been established. Elevated PP promotes endothelial dysfunction that may slowly develop in parallel with the accumulation of proinflammatory senescent cells and oxidative stress, generating cerebrovascular damage and remodeling, as well as brain structural changes. Here, we review data suggesting that age-related increased peripheral artery stiffness may promote the penetration of a high PP to cerebral microvessels, likely causing functional, structural, metabolic, and hemodynamic alterations that could ultimately promote neuronal dysfunction and cognitive decline.


Asunto(s)
Presión Sanguínea , Arterias Cerebrales/fisiopatología , Circulación Cerebrovascular , Trastornos Cerebrovasculares/etiología , Cognición , Envejecimiento Cognitivo/psicología , Disfunción Cognitiva/etiología , Enfermedades Vasculares Periféricas/complicaciones , Factores de Edad , Animales , Trastornos Cerebrovasculares/fisiopatología , Trastornos Cerebrovasculares/psicología , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Humanos , Microcirculación , Estrés Oxidativo , Enfermedades Vasculares Periféricas/fisiopatología , Flujo Pulsátil , Factores de Riesgo , Remodelación Vascular , Rigidez Vascular
4.
Exp Biol Med (Maywood) ; 243(1): 45-49, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29192516

RESUMEN

Angiopoietin-like 2 (ANGPTL2) is an inflammatory adipokine linking obesity to insulin resistance. Intermittent fasting, on the other hand, is a lifestyle intervention able to prevent obesity and diabetes but difficult to implement and maintain. Our objectives were to characterize a link between ANGPTL2 and intermittent fasting and to investigate whether the knockdown of ANGPTL2 reproduces the benefits of intermittent fasting on weight gain and insulin responsiveness in knockdown and wild-type littermates mice. Intermittent fasting, access to food ad libitum once every other day, was initiated at the age of three months and maintained for four months. Intermittent fasting decreased by 63% (p < 0.05) gene expression of angptl2 in adipose tissue of wild-type mice. As expected, intermittent fasting improved insulin sensitivity (p < 0.05) and limited weight gain (p < 0.05) in wild-type mice. Knockdown mice fed ad libitum, however, were comparable to wild-type mice following the intermittent fasting regimen: insulin sensitivity and weight gain were identical, while intermittent fasting had no additional impact on these parameters in knockdown mice. Energy intake was similar between both wild-type fed intermittent fasting and ANGPTL2 knockdown mice fed ad libitum, suggesting that intermittent fasting and knockdown of ANGPTL2 equally lower feeding efficiency. These results suggest that the reduction of ANGPTL2 could be a useful and promising strategy to prevent obesity and insulin resistance, although further investigation of the mechanisms linking ANGPTL2 and intermittent fasting is warranted. Impact statement Intermittent fasting is an efficient diet pattern to prevent weight gain and improve insulin sensitivity. It is, however, a difficult regimen to follow and compliance is expected to be very low. In this work, we demonstrate that knockdown of ANGPTL2 in mice fed ad libitum mimics the beneficial effects of intermittent fasting on weight gain and insulin sensitivity in wild-type mice. ANGPTL2 is a cytokine positively associated with fat mass in humans, which inactivation in mice improves resistance to a high-fat metabolic challenge. This study provides a novel pathway by which IF acts to limit obesity despite equivalent energy intake. The development of a pharmacological ANGPTL2 antagonist could provide an efficient tool to reduce the burden of obesity.


Asunto(s)
Proteínas Similares a la Angiopoyetina/metabolismo , Ayuno , Resistencia a la Insulina , Obesidad/prevención & control , Proteína 2 Similar a la Angiopoyetina , Animales , Técnicas de Silenciamiento del Gen , Humanos , Hipoglucemiantes/metabolismo , Insulina/metabolismo , Masculino , Ratones Endogámicos C57BL , Obesidad/complicaciones , Pérdida de Peso
5.
Neurobiol Aging ; 57: 28-35, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28595105

RESUMEN

At a population level, dietary consumption of fish rich in docosahexaenoic acid (DHA) is associated with prevention of cognitive decline but this association is not clear in carriers of the apolipoprotein E epsilon 4 allele (E4). Plasma and liver DHA concentrations show significant alterations in E4 carriers, in part corrected by DHA supplementation. However, whether DHA sufficiency in E4 carriers has consequences on cognition is unknown. Mice expressing human E4 or apolipoprotein E epsilon 3 allele (E3) were fed either a control diet or a diet containing DHA for 8 months and cognitive performance was tested using the object recognition test and the Barnes maze test. In E4 mice fed the control diet, impaired memory was detected and arachidonic acid concentrations were elevated in the hippocampus compared to E3 mice fed the control diet. DHA consumption prevented memory decline and restored arachidonic acid concentrations in the hippocampus of E4 mice. Our results suggest that long-term high-dose DHA intake may prevent cognitive decline in E4 carriers.


Asunto(s)
Apolipoproteína E4 , Disfunción Cognitiva/genética , Disfunción Cognitiva/prevención & control , Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/metabolismo , Animales , Ácido Araquidónico/metabolismo , Disfunción Cognitiva/metabolismo , Femenino , Hipocampo , Masculino , Ratones Endogámicos C57BL
6.
Neurobiol Aging ; 54: 84-93, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28347928

RESUMEN

Although a major risk factor for Alzheimer's disease (AD), the "aging" parameter is not systematically considered in preclinical validation of anti-AD drugs. To explore how aging affects neuronal reactivity to anti-AD agents, the ciliary neurotrophic factor (CNTF)-associated pathway was chosen as a model. Comparison of the neuroprotective properties of CNTF in 6- and 18-month old mice revealed that CNTF resistance in the older animals is associated with the exclusion of the CNTF-receptor subunits from rafts and their subsequent dispersion to non-raft cortical membrane domains. This age-dependent membrane remodeling prevented both the formation of active CNTF-receptor complexes and the activation of prosurvival STAT3 and ERK1/2 pathways, demonstrating that age-altered membranes impaired the reactivity of potential therapeutic targets. CNTF-receptor distribution and CNTF signaling responses were improved in older mice receiving dietary docosahexaenoic acid, with CNTF-receptor functionality being similar to those of younger mice, pointing toward dietary intervention as a promising adjuvant strategy to maintain functional neuronal membranes, thus allowing the associated receptors to respond appropriately to anti-AD agents.


Asunto(s)
Envejecimiento/genética , Envejecimiento/fisiología , Encéfalo/citología , Membrana Celular/fisiología , Neuronas/citología , Nootrópicos/uso terapéutico , Animales , Factor Neurotrófico Ciliar/fisiología , Grasas Insaturadas en la Dieta , Ácidos Docosahexaenoicos , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Microdominios de Membrana , Ratones Endogámicos C57BL , Receptor de Factor Neurotrófico Ciliar/fisiología , Factor de Transcripción STAT3/metabolismo , Transducción de Señal
7.
Physiol Genomics ; 48(12): 928-935, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27789735

RESUMEN

Perturbations of lipid homeostasis manifest as dyslipidemias and obesity, which are significant risk factors for atherosclerosis and diabetes. Lipoprotein receptors in the liver are key players in the regulation of lipid homeostasis, among which the hepatic lipolysis stimulated lipoprotein receptor, LSR, was recently shown to play an important role in the removal of lipoproteins from the circulation during the postprandial phase. Since heterozygous LSR+/- mice demonstrate moderate dyslipidemia and develop higher body weight gain in response to high-fat diet compared with littermate LSR+/+ controls, we questioned if LSR heterozygosity could affect genes related to hepatic lipid metabolism. A target-specific qPCR array for 84 genes related to lipid metabolism was performed on mRNA isolated from livers of 6 mo old female LSR+/- mice and LSR+/+ littermates following a 6 wk period on a standard (STD) or high-fat diet (60% kcal, HFD). Of the 84 genes studied, 32 were significantly downregulated in STD-LSR+/- mice compared with STD-LSR+/+, a majority of which were PPARα target genes involved in lipid metabolism and transport, and insulin and adipokine-signaling pathways. Of these 32 genes, 80% were also modified in HFD-LSR+/+, suggesting that STD-LSR+/- mice demonstrated a predisposition towards a "high-fat"-like profile, which could reflect dysregulation of liver lipid homeostasis. Since similar profiles of genes were affected by either LSR heterozygosity or by high-fat diet, this would suggest that LSR is a key receptor in regulating hepatic lipid homeostasis, and whose downregulation combined with a Western-type diet may increase predisposition to diet-induced obesity.


Asunto(s)
Dieta Alta en Grasa/efectos adversos , Homeostasis/genética , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Receptores de Lipoproteína/genética , Transcriptoma/genética , Animales , Regulación hacia Abajo/genética , Femenino , Heterocigoto , Insulina/genética , Lípidos/genética , Ratones , Obesidad/genética , Aumento de Peso/genética
8.
J Nutr ; 146(7): 1315-21, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27306896

RESUMEN

BACKGROUND: Metabolism of long-chain polyunsaturated fatty acids (LC-PUFAs) is disturbed in carriers of the apolipoprotein E (APOE) ε4 allele (APOE4). More specifically, APOE4 carriers are lower responders to ω-3 (n-3) LC-PUFA supplementation; this might be because LC-PUFA transport into cells or ß-oxidation is disturbed. However, high doses of dietary docosahexaenoic acid (DHA) seem to restore DHA homeostasis in APOE4 carriers, but the contribution of hepatic fatty acid (FA) transporters is unknown. OBJECTIVES: With the use of mice carrying human APOE isoforms, we sought to investigate whether a DHA-rich diet could restore DHA homeostasis in APOE4 mice and whether this involved hepatic FA transporters. METHODS: Male and female mice homozygous for the APOE ε2 allele, APOE ε3 allele (APOE3), and APOE4 were fed either a diet enriched with DHA (0.7 g DHA/100 g diet) or a control diet for 8 mo and were killed at 12 mo of age. Liver and plasma FA profiles were measured by GC, and FA transporter expression was evaluated by Western immunoblotting. RESULTS: There was a significant genotype × diet interaction for hepatic concentrations of arachidonic acid (AA) and DHA (P = 0.005 and P = 0.002, respectively) and a trend toward an interaction for liver expression of fatty acid binding protein 1 (FABP1) (P-interaction = 0.05). APOE4 mice had 60-100% higher liver AA, DHA, and FABP1 than did APOE3 mice, but only when fed the control diet. Independent of diet, APOE4 mice had 20-30% lower plasma concentrations of AA and DHA than did APOE3 mice. Overall, mice fed the DHA diet had 50% lower concentrations of liver total FAs than did mice fed the control diet. CONCLUSIONS: These findings in transgenic mice suggest that a long-term diet rich in DHA suppresses the APOE4-specific disturbances in hepatic transport and concentration of AA and DHA and also reduces hepatic total FA concentrations, regardless of genotype.


Asunto(s)
Apolipoproteína E4/metabolismo , Ácido Araquidónico/metabolismo , Ácidos Docosahexaenoicos/administración & dosificación , Ácidos Docosahexaenoicos/metabolismo , Hígado/metabolismo , Alimentación Animal/análisis , Animales , Apolipoproteína E4/genética , Ácido Araquidónico/genética , Dieta , Ácidos Docosahexaenoicos/genética , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Transgénicos
9.
J Nutr Biochem ; 34: 83-8, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27239755

RESUMEN

Carrying at least one apolipoprotein E ε4 allele (E4+) is the main genetic risk factor for Alzheimer's disease (AD). Epidemiological studies support that consuming fatty fish rich in docosahexaenoic acid (DHA; 22:6ω3) is protective against development of AD. However, this protective effect seems not to hold in E4+. The involvement of APOE genotype on the relationship between DHA intake and cognitive decline could be mediated through cholesterol. Many studies show a link between cholesterol metabolism and AD progression. In this study, we investigated whether cholesterol metabolism is improved in E3+ and E4+ mice consuming a diet rich in DHA. Plasma cholesterol was 36% lower in E4+ mice compared to E3+ mice fed the control diet (P=.02), and in the liver, there was a significant genotype effect where cholesterol levels were 18% lower in E4+ mice than E3+ mice. The low-density lipoprotein receptor was overexpressed in the liver of E4+ mice. Plasma cholesterol levels were 33% lower after the DHA diet (P=.02) in E3+ mice only, and there was a significant diet effect where cholesterol level was 67% lower in the liver of mice fed DHA. Mice fed the DHA diet also had 62% less lipolysis stimulated lipoprotein receptor expression in the liver compared to mice fed the control diet (P<.0001), but there was no genotype effect. These findings suggest that plasma and liver cholesterol homeostasis and the receptors regulating uptake of cholesterol in the liver are modulated differently and independently by APOE allele and DHA intake.


Asunto(s)
Apolipoproteína E3/genética , Apolipoproteína E4/genética , Ácidos Docosahexaenoicos/uso terapéutico , Regulación de la Expresión Génica , Hígado/metabolismo , Receptores de LDL/metabolismo , Alelos , Animales , Anticolesterolemiantes/uso terapéutico , Apolipoproteína E3/sangre , Apolipoproteína E3/metabolismo , Apolipoproteína E4/sangre , Apolipoproteína E4/metabolismo , Colesterol/sangre , Colesterol/metabolismo , Suplementos Dietéticos , Humanos , Hipercolesterolemia/sangre , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Hipercolesterolemia/prevención & control , Lipólisis , Ratones Transgénicos , Receptores de LDL/genética , Destete
10.
J Alzheimers Dis ; 45(1): 195-204, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25690661

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disease that has been linked to changes in cholesterol metabolism. Neuronal cholesterol content significantly influences the pro-apoptotic effect of amyloid-ß peptide42 (Aß42), which plays a key role in AD development. We previously reported that aged mice with reduced expression of the lipolysis stimulated lipoprotein receptor (LSR+/-), demonstrate membrane cholesterol accumulation and decreased intracellular lipid droplets in several brain regions, suggesting a potential role of LSR in brain cholesterol distribution. We questioned if these changes rendered the LSR+/- mouse more susceptible to Aß42-induced cognitive and biochemical changes. Results revealed that intracerebroventricular injection of oligomeric Aß42 in male 15-month old LSR+/+ and LSR+/- mice led to impairment in learning and long-term memory and decreased cortical cholesterol content of both groups; these effects were significantly amplified in the Aß42-injected LSR+/- group. Total latency of the Morris test was significantly and negatively correlated with cortical cholesterol content of the LSR+/- mice, but not of controls. Significantly lower cortical PSD95 and SNAP-25 levels were detected in Aß42-injected LSR+/- mice as compared to Aß42-injected LSR+/+ mice. In addition, 24S-hydroxy cholesterol metabolite levels were significantly higher in the cortex of LSR+/- mice. Taken together, these results suggest that changes in cortex cholesterol regulation as a result of the LSR+/- genotype were linked to increased susceptibility to amyloid stress, and we would therefore propose the aged LSR+/- mouse as a new model for understanding the link between modified cholesterol regulation as a risk factor for AD.


Asunto(s)
Péptidos beta-Amiloides/farmacología , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Colesterol/metabolismo , Fragmentos de Péptidos/farmacología , Receptores de Lipoproteína/deficiencia , Análisis de Varianza , Animales , Homólogo 4 de la Proteína Discs Large , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Guanilato-Quinasas/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hidroxicolesteroles/metabolismo , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , ARN Mensajero , Receptores de Lipoproteína/genética , Análisis de Regresión , Proteína 25 Asociada a Sinaptosomas/metabolismo
11.
J Neurochem ; 123(4): 467-76, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22909011

RESUMEN

Brain lipid homeostasis is important for maintenance of brain cell function and synaptic communications, and is intimately linked to age-related cognitive decline. Because of the blood-brain barrier's limiting nature, this tissue relies on a complex system for the synthesis and receptor-mediated uptake of lipids between the different networks of neurons and glial cells. Using immunofluorescence, we describe the region-specific expression of the lipolysis-stimulated lipoprotein receptor (LSR), in the mouse hippocampus, cerebellum Purkinje cells, the ependymal cell interface between brain parenchyma and cerebrospinal fluid, and the choroid plexus. Colocalization with cell-specific markers revealed that LSR was expressed in neurons, but not astrocytes. Latency in arms of the Y-maze exhibited by young heterozygote LSR(+/-) mice was significantly different as compared to control LSR(+/+), and increased in older LSR(+/-) mice. Filipin and Nile red staining revealed membrane cholesterol content accumulation accompanied by significantly altered distribution of LSR in the membrane, and decreased intracellular lipid droplets in the cerebellum and hippocampus of old LSR(+/-) mice, as compared to control littermates as well as young LSR(+/-) animals. These data therefore suggest a potential role of LSR in brain cholesterol distribution, which is particularly important in preserving neuronal integrity and thereby cognitive functions during aging.


Asunto(s)
Envejecimiento/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Colesterol/metabolismo , Neuronas/metabolismo , Receptores de LDL/metabolismo , Factores de Edad , Animales , Plexo Coroideo/metabolismo , Filipina/metabolismo , Regulación de la Expresión Génica/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfopiruvato Hidratasa/metabolismo , Receptores de LDL/deficiencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...