Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Vaccines (Basel) ; 12(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38793768

RESUMEN

African swine fever (ASF) is a deadly disease of swine currently causing a worldwide pandemic, leading to severe economic consequences for the porcine industry. The control of disease spread is hampered by the limitation of available effective vaccines. Live attenuated vaccines (LAVs) are currently the most advanced vaccine prototypes, providing strong protection against ASF. However, the significant advances achieved using LAVs must be complemented with further studies to analyze vaccine-induced immunity. Here, we characterized the onset of cross-protective immunity triggered by the LAV candidate BA71ΔCD2. Intranasally vaccinated pigs were challenged with the virulent Georgia 2007/1 strain at days 3, 7 and 12 postvaccination. Only the animals vaccinated 12 days before the challenge had effectively controlled infection progression, showing low virus loads, minor clinical signs and a lack of the unbalanced inflammatory response characteristic of severe disease. Contrarily, the animals vaccinated 3 or 7 days before the challenge just showed a minor delay in disease progression. An analysis of the humoral response and whole blood transcriptome signatures demonstrated that the control of infection was associated with the presence of virus-specific IgG and a cytotoxic response before the challenge. These results contribute to our understanding of protective immunity induced by LAV-based vaccines, encouraging their use in emergency responses in ASF-affected areas.

2.
PLoS Pathog ; 18(11): e1010931, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36350837

RESUMEN

African swine fever virus (ASFV) is causing a worldwide pandemic affecting the porcine industry and leading to important global economic consequences. The virus causes a highly lethal hemorrhagic disease in wild boars and domestic pigs. Lack of effective vaccines hampers the control of virus spread, thus increasing the pressure on the scientific community for urgent solutions. However, knowledge on the immune components associated with protection is very limited. Here we characterized the in vitro recall response induced by immune cells from pigs intranasally vaccinated with the BA71ΔCD2 deletion mutant virus. Vaccination conferred dose-dependent cross-protection associated with both ASFV-specific antibodies and IFNγ-secreting cells. Importantly, bulk and single-cell transcriptomics of blood and lymph node cells from vaccinated pigs revealed a positive feedback from adaptive to innate immunity. Indeed, activation of Th1 and cytotoxic T cells was concomitant with a rapid IFNγ-dependent triggering of an inflammatory response characterized by TNF-producing macrophages, as well as CXCL10-expressing lymphocytes and cross-presenting dendritic cells. Altogether, this study provides a detailed phenotypic characterization of the immune cell subsets involved in cross-protection against ASFV, and highlights key functional immune mechanisms to be considered for the development of an effective ASF vaccine.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Vacunas Virales , Porcinos , Animales , Proteínas Virales , Sus scrofa , Vacunación , Inmunidad Innata
3.
J Virol ; 96(1): e0141921, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34668772

RESUMEN

African swine fever (ASF) is currently causing a major pandemic affecting the swine industry and protein availability from Central Europe to East and South Asia. No commercial vaccines are available, making disease control dependent on the elimination of affected animals. Here, we show that the deletion of the African swine fever virus (ASFV) E184L gene from the highly virulent ASFV Georgia 2010 (ASFV-G) isolate produces a reduction in virus virulence during the infection in swine. Of domestic pigs intramuscularly inoculated with a recombinant virus lacking the E184L gene (ASFV-G-ΔE184L), 40% experienced a significantly (5 days) delayed presentation of clinical disease and, overall, had a 60% rate of survival compared to animals inoculated with the virulent parental ASFV-G. Importantly, all animals surviving ASFV-G-ΔE184L infection developed a strong antibody response and were protected when challenged with ASFV-G. As expected, a pool of sera from ASFV-G-ΔE184L-inoculated animals lacked any detectable antibody response to peptides partially representing the E184L protein, while sera from animals inoculated with an efficacious vaccine candidate, ASFV-G-ΔMGF, strongly recognize the same set of peptides. These results support the potential use of the E184L deletion for the development of vaccines able to differentiate infected from vaccinated animals (DIVA). Therefore, it is shown here that the E184L gene is a novel ASFV determinant of virulence that can potentially be used to increase safety in preexisting vaccine candidates, as well as to provide them with DIVA capabilities. To our knowledge, E184L is the first ASFV gene product experimentally shown to be a functional DIVA antigenic marker. IMPORTANCE No commercial vaccines are available to prevent African swine fever (ASF). The ASF pandemic caused by the ASF virus Georgia 2010 (ASFV-G) strain is seriously affecting pork production in a contiguous geographical area from Central Europe to East Asia. The only effective experimental vaccines are viruses attenuated by deleting ASFV genes associated with virus virulence. Therefore, identification of such genes is of critical importance for vaccine development. Here, we report the discovery of a novel determinant of ASFV virulence, the E184L gene. Deletion of the E184L gene from the ASFV-G genome (ASFV-G-ΔE184L) produced a reduction in virus virulence, and importantly, animals surviving infection with ASFV-G-ΔE184L were protected from developing ASF after challenge with the virulent parental virus ASFV-G. Importantly, the virus protein encoded by E184L is highly immunogenic, making a virus lacking this gene a vaccine candidate that allows the differentiation of infected from vaccinated animals (DIVA). Here, we show that unlike what is observed in animals inoculated with the vaccine candidate ASFV-G-ΔMGF, ASFV-G-ΔE184L-inoculated animals do not mount a E184L-specific antibody response, indicating the feasibility of using the E184L deletion as the antigenic marker for the development of a DIVA vaccine in ASFV.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/virología , Interacciones Huésped-Patógeno , Eliminación de Secuencia , Proteínas Virales/genética , Factores de Virulencia/genética , Fiebre Porcina Africana/diagnóstico , Virus de la Fiebre Porcina Africana/clasificación , Secuencia de Aminoácidos , Animales , Temperatura Corporal , Secuencia Conservada , Regulación Viral de la Expresión Génica , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/virología , Filogenia , Porcinos , Proteínas Virales/química , Proteínas Virales/metabolismo , Viremia , Virulencia , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Replicación Viral
4.
Viruses ; 13(9)2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34578263

RESUMEN

African swine fever (ASF) has become the major threat to the global swine industry. Lack of available commercial vaccines complicates the implementation of global control strategies. So far, only live attenuated ASF viruses (ASFV) have demonstrated solid protection efficacy at the experimental level. The implementation of molecular techniques has allowed the generation of a collection of deletion mutants lacking ASFV-specific virulence factors, some of them with promising potential as vaccine candidates against the pandemic genotype II ASFV strain currently circulating in Africa, Europe, Asia and Oceania. Despite promising results, there is room for improvement, mainly from the biosafety point of view. Aiming to improve the safety of BA71∆CD2, a cross-protective recombinant live attenuated virus (LAV) lacking the ASFV CD2v gene (encoding ß-glucuronidase as a reporter gene) available in our laboratory, three new recombinants were generated using BA71∆CD2 as a template: the single mutant BA71∆CD2f, this time containing the fluorescent mCherry reporter gene instead of CD2v, and two double recombinants lacking CD2v and either the lectin gene (EP153R) or the uridine kinase (UK) gene (DP96R). Comparative in vivo experiments using BA71∆CD2f, BA71∆CD2DP96R and BA71∆CD2EP153R recombinant viruses as immunogens, demonstrated that deletion of either DP96R or EP153R from BA71∆CD2f decreases vaccine efficacy and does not improve safety. Our results additionally confirm ASFV challenge as the only available method today to evaluate the protective efficacy of any experimental vaccine. We believe that understanding the fine equilibrium between attenuation and inducing protection in vivo deserves further study and might contribute to more rational vaccine designs in the future.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Virus de la Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/prevención & control , Anticuerpos Antivirales/sangre , Eliminación de Gen , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/inmunología , Células Cultivadas , Genotipo , Macrófagos/virología , Masculino , Porcinos , Eficacia de las Vacunas , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/inmunología , Vacunas Virales/genética , Factores de Virulencia/genética , Replicación Viral
5.
Vaccines (Basel) ; 9(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069239

RESUMEN

African swine fever (ASF) is today's number one threat for the global swine industry. Neither commercial vaccine nor treatment is available against ASF and, thus far, only live attenuated viruses (LAV) have provided robust protection against lethal ASF virus (ASFV) challenge infections. Identification of ASFV proteins inducing protective immune responses is one of the major challenges to develop safer and efficient subunit vaccines. Immunopeptidomic studies recently performed in our laboratory allowed identifying ASFV antigens recognized by ASFV-specific CD8+ T-cells. Here, we used data from the SLAI-peptide repertoire presented by a single set of ASFV-infected porcine alveolar macrophages to generate a complex DNA vaccine composed by 15 plasmids encoding the individual peptide-bearing ORFs. DNA vaccine priming improved the protection afforded by a suboptimal dose of the BA71ΔCD2 LAV given as booster vaccination, against Georgia2007/1 lethal challenge. Interestingly, M448R was the only protein promiscuously recognized by the induced ASFV-specific T-cells. Furthermore, priming pigs with DNA plasmids encoding M488R and MGF505-7R, a CD8+ T-cell antigen previously described, confirmed these two proteins as T-cell antigens with protective potential. These studies might be useful to pave the road for designing safe and more efficient vaccine formulations in the future.

6.
Vaccines (Basel) ; 9(1)2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33430316

RESUMEN

The development of subunit vaccines against African swine fever (ASF) is mainly hindered by the lack of knowledge regarding the specific ASF virus (ASFV) antigens involved in protection. As a good example, the identity of ASFV-specific CD8+ T-cell determinants remains largely unknown, despite their protective role being established a long time ago. Aiming to identify them, we implemented the IFNγ ELISpot as readout assay, using as effector cells peripheral blood mononuclear cells (PBMCs) from pigs surviving experimental challenge with Georgia2007/1. As stimuli for the ELISpot, ASFV-specific peptides or full-length proteins identified by three complementary strategies were used. In silico prediction of specific CD8+ T-cell epitopes allowed identifying a 19-mer peptide from MGF100-1L, as frequently recognized by surviving pigs. Complementarily, the repertoire of SLA I-bound peptides identified in ASFV-infected porcine alveolar macrophages (PAMs), allowed the characterization of five additional SLA I-restricted ASFV-specific epitopes. Finally, in vitro stimulation studies using fibroblasts transfected with plasmids encoding full-length ASFV proteins, led to the identification of MGF505-7R, A238L and MGF100-1L as promiscuously recognized antigens. Interestingly, each one of these proteins contain individual peptides recognized by surviving pigs. Identification of the same ASFV determinants by means of such different approaches reinforce the results presented here.

7.
Viruses ; 12(12)2020 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371460

RESUMEN

African swine fever (ASF) has become the major threat for the global swine industry. Furthermore, the epidemiological situation of African swine fever virus (ASFV) in some endemic regions of Sub-Saharan Africa is worse than ever, with multiple virus strains and genotypes currently circulating in a given area. Despite the recent advances on ASF vaccine development, there are no commercial vaccines yet, and most of the promising vaccine prototypes available today have been specifically designed to fight the genotype II strains currently circulating in Europe, Asia, and Oceania. Previous results from our laboratory have demonstrated the ability of BA71∆CD2, a recombinant LAV lacking CD2v, to confer protection against homologous (BA71) and heterologous genotype I (E75) and genotype II (Georgia2007/01) ASFV strains, both belonging to same clade (clade C). Here, we extend these results using BA71∆CD2 as a tool trying to understand ASFV cross-protection, using phylogenetically distant ASFV strains. We first observed that five out of six (83.3%) of the pigs immunized once with 106 PFU of BA71∆CD2 survived the tick-bite challenge using Ornithodoros sp. soft ticks naturally infected with RSA/11/2017 strain (genotype XIX, clade D). Second, only two out of six (33.3%) survived the challenge with Ken06.Bus (genotype IX, clade A), which is phylogenetically more distant to BA71∆CD2 than the RSA/11/2017 strain. On the other hand, homologous prime-boosting with BA71∆CD2 only improved the survival rate to 50% after Ken06.Bus challenge, all suffering mild ASF-compatible clinical signs, while 100% of the pigs immunized with BA71∆CD2 and boosted with the parental BA71 virulent strain survived the lethal challenge with Ken06.Bus, without almost no clinical signs of the disease. Our results confirm that cross-protection is a multifactorial phenomenon that not only depends on sequence similarity. We believe that understanding this complex phenomenon will be useful for designing future vaccines for ASF-endemic areas.


Asunto(s)
Virus de la Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Protección Cruzada/inmunología , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Fiebre Porcina Africana/prevención & control , Virus de la Fiebre Porcina Africana/genética , Animales , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos/inmunología , Células COS , Línea Celular , Chlorocebus aethiops , Genotipo , Inmunización , Inmunoglobulina G/inmunología , Porcinos , Proteínas Virales/inmunología
8.
Sci Rep ; 10(1): 17605, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077775

RESUMEN

African swine fever virus (ASFV) is the causative agent of a devastating hemorrhagic disease (ASF) that affects both domestic pigs and wild boars. Conversely, ASFV circulates in a subclinical manner in African wild pigs, including warthogs, the natural reservoir for ASFV. Together with genetic differences, other factors might be involved in the differential susceptibility to ASF observed among Eurasian suids (Sus scrofa) and African warthogs (Phacochoerus africanus). Preliminary evidence obtained in our laboratory and others, seems to confirm the effect that environmental factors might have on ASF infection. Thus, domestic pigs raised in specific pathogen-free (SPF) facilities were extremely susceptible to highly attenuated ASFV strains that were innocuous to genetically identical domestic pigs grown on conventional farms. Since gut microbiota plays important roles in maintaining intestinal homeostasis, regulating immune system maturation and the functionality of the innate/adaptive immune responses, we decided to examine whether warthog fecal microbiota transplantation (FMT) to domestic pigs affects host susceptibility to ASFV. The present work demonstrates that warthog FMT is not harmful for domestic weaned piglets, while it modifies their gut microbiota; and that FMT from warthogs to pigs confers partial protection against attenuated ASFV strains. Future work is needed to elucidate the protective mechanisms exerted by warthog FMT.


Asunto(s)
Fiebre Porcina Africana/inmunología , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiología , Fiebre Porcina Africana/virología , Animales , Susceptibilidad a Enfermedades , Sus scrofa , Porcinos
9.
PLoS One ; 14(9): e0222201, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31553755

RESUMEN

Swine influenza virus (SIVs) infections cause a significant economic impact to the pork industry. Moreover, pigs may act as mixing vessel favoring genome reassortment of diverse influenza viruses. Such an example is the pandemic H1N1 (pH1N1) virus that appeared in 2009, harboring a combination of gene segments from avian, pig and human lineages, which rapidly reached pandemic proportions. In order to confront and prevent these possible emergences as well as antigenic drift phenomena, vaccination remains of vital importance. The present work aimed to evaluate a new DNA influenza vaccine based on distinct conserved HA-peptides fused with flagellin and applied together with Diluvac Forte as adjuvant using a needle-free device (IntraDermal Application of Liquids, IDAL®). Two experimental pig studies were performed to test DNA-vaccine efficacy against SIVs in pigs. In the first experiment, SIV-seronegative pigs were vaccinated with VC4-flagellin DNA and intranasally challenged with a pH1N1. In the second study, VC4-flagellin DNA vaccine was employed in SIV-seropositive animals and challenged intranasally with an H3N2 SIV-isolate. Both experiments demonstrated a reduction in the viral shedding after challenge, suggesting vaccine efficacy against both the H1 and H3 influenza virus subtypes. In addition, the results proved that maternally derived antibodies (MDA) did not constitute an obstacle to the vaccine approach used. Moreover, elevated titers in antibodies both against H1 and H3 proteins in serum and in bronchoalveolar lavage fluids (BALFs) was detected in the vaccinated animals along with a markedly increased mucosal IgA response. Additionally, vaccinated animals developed stronger neutralizing antibodies in BALFs and higher inhibiting hemagglutination titers in sera against both the pH1N1 and H3N2 influenza viruses compared to unvaccinated, challenged-pigs. It is proposed that the described DNA-vaccine formulation could potentially be used as a multivalent vaccine against SIV infections.


Asunto(s)
Vacunas contra la Influenza/uso terapéutico , Infecciones por Orthomyxoviridae/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunas de ADN/uso terapéutico , Animales , Secuencia Conservada , Femenino , Hemaglutininas/genética , Hemaglutininas/inmunología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Masculino , Infecciones por Orthomyxoviridae/inmunología , Porcinos/inmunología , Porcinos/virología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Vacunas de ADN/inmunología
10.
PLoS One ; 14(3): e0212431, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30822308

RESUMEN

Swine influenza viruses (SIVs), the causal agents of swine influenza, are not only important to control due to the economic losses in the swine industry, but also can be pandemic pathogens. Vaccination is one of the most relevant strategies to control and prevent influenza infection. Current human vaccines against influenza induce strain-specific immunity and annual update is required due to the virus antigenic shift phenomena. Previously, our group has reported the use of conserved hemagglutinin peptides (HA-peptides) derived from H1-influenza virus as a potential multivalent vaccine candidate. Immunization of swine with these HA-peptides elicited antibodies that recognized and neutralized heterologous influenza viruses in vitro and demonstrated strong hemagglutination-inhibiting activity. In the present work, we cloned one HA-peptide (named NG34) into a plasmid fused with cytotoxic T lymphocyte-associated antigen (CTLA4) which is a molecule that modifies T cell activation and with an adjuvant activity interfering with the adaptive immune response. The resulting plasmid, named pCMV-CTLA4-Ig-NG34, was administered twice to animals employing a needle-free delivery approach. Two studies were carried out to test the efficacy of pCMV-CTLA4-Ig-NG34 as a potential swine influenza vaccine, one in seronegative and another in seropositive pigs against SIV. The second one was aimed to evaluate whether pCMV-CTLA4-Ig-NG34 vaccination would overcome maternally derived antibodies (MDA). After immunization, all animals were intranasally challenged with an H3N2 influenza strain. A complete elimination or significant reduction in the viral shedding was observed within the first week after the challenge in the vaccinated animals from both studies. In addition, no challenged heterologous virus load was detected in the airways of vaccinated pigs. Overall, it is suggested that the pCMV-CTLA4-Ig-NG34 vaccine formulation could potentially be used as a multivalent vaccine against influenza viruses.


Asunto(s)
Abatacept , Glicoproteínas Hemaglutininas del Virus de la Influenza , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza , Infecciones por Orthomyxoviridae , Péptidos , Enfermedades de los Porcinos , Vacunas de ADN , Esparcimiento de Virus , Abatacept/genética , Abatacept/inmunología , Abatacept/farmacología , Animales , Perros , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/farmacología , Subtipo H3N2 del Virus de la Influenza A/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Vacunas contra la Influenza/farmacología , Células de Riñón Canino Madin Darby , Infecciones por Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Péptidos/genética , Péptidos/inmunología , Péptidos/farmacología , Plásmidos/genética , Plásmidos/inmunología , Plásmidos/farmacología , Porcinos , Enfermedades de los Porcinos/genética , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/prevención & control , Vacunación , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Vacunas de ADN/farmacología , Esparcimiento de Virus/efectos de los fármacos , Esparcimiento de Virus/genética , Esparcimiento de Virus/inmunología
11.
Vet Res ; 49(1): 90, 2018 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-30208957

RESUMEN

African swine fever (ASF) is a pathology of pigs against which there is no treatment or vaccine. Understanding the equilibrium between innate and adaptive protective responses and immune pathology might contribute to the development of strategies against ASFV. Here we compare, using a proteomic approach, the course of the in vivo infection caused by two homologous strains: the virulent E75 and the attenuated E75CV1. Our results show a progressive loss of proteins by day 7 post-infection (pi) with E75, reflecting tissue destruction. Many signal pathways were affected by both infections but in different ways and extensions. Cytoskeletal remodelling and clathrin-endocytosis were affected by both isolates, while a greater number of proteins involved on inflammatory and immunological pathways were altered by E75CV1. 14-3-3 mediated signalling, related to immunity and apoptosis, was inhibited by both isolates. The implication of the Rho GTPases by E75CV1 throughout infection is also evident. Early events reflected the lack of E75 recognition by the immune system, an evasion strategy acquired by the virulent strains, and significant changes at 7 days post-infection (dpi), coinciding with the peak of infection and the time of death. The protein signature at day 31 pi with E75CV1 seems to reflect events observed at 1 dpi, including the upregulation of proteosomal subunits and molecules described as autoantigens (vimentin, HSPB1, enolase and lymphocyte cytosolic protein 1), which allow the speculation that auto-antibodies could contribute to chronic ASFV infections. Therefore, the use of proteomics could help understand ASFV pathogenesis and immune protection, opening new avenues for future research.


Asunto(s)
Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/inmunología , Ganglios Linfáticos/inmunología , Proteómica , Fiebre Porcina Africana/virología , Animales , Porcinos
12.
J Virol ; 91(21)2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28814514

RESUMEN

African swine fever is a highly contagious viral disease of mandatory declaration to the World Organization for Animal Health (OIE). The lack of available vaccines makes its control difficult; thus, African swine fever virus (ASFV) represents a major threat to the swine industry. Inactivated vaccines do not confer solid protection against ASFV. Conversely, live attenuated viruses (LAV), either naturally isolated or obtained by genetic manipulation, have demonstrated reliable protection against homologous ASFV strains, although little or no protection has been demonstrated against heterologous viruses. Safety concerns are a major issue for the use of ASFV attenuated vaccine candidates and have hampered their implementation in the field so far. While trying to develop safer and efficient ASFV vaccines, we found that the deletion of the viral CD2v (EP402R) gene highly attenuated the virulent BA71 strain in vivo Inoculation of pigs with the deletion mutant virus BA71ΔCD2 conferred protection not only against lethal challenge with the parental BA71 but also against the heterologous E75 (both genotype I strains). The protection induced was dose dependent, and the cross-protection observed in vivo correlated with the ability of BA71ΔCD2 to induce specific CD8+ T cells capable of recognizing both BA71 and E75 viruses in vitro Interestingly, 100% of the pigs immunized with BA71ΔCD2 also survived lethal challenge with Georgia 2007/1, the genotype II strain of ASFV currently circulating in continental Europe. These results open new avenues to design ASFV cross-protective vaccines, essential to fight ASFV in areas where the virus is endemic and where multiple viruses are circulating.IMPORTANCE African swine fever virus (ASFV) remains enzootic in most countries of Sub-Saharan Africa, today representing a major threat for the development of their swine industry. The uncontrolled presence of ASFV has favored its periodic exportation to other countries, the last event being in Georgia in 2007. Since then, ASFV has spread toward neighboring countries, reaching the European Union's east border in 2014. The lack of available vaccines against ASFV makes its control difficult; so far, only live attenuated viruses have demonstrated solid protection against homologous experimental challenges, but they have failed at inducing solid cross-protective immunity against heterologous viruses. Here we describe a new LAV candidate with unique cross-protective abilities: BA71ΔCD2. Inoculation of BA71ΔCD2 protected pigs not only against experimental challenge with BA71, the virulent parental strain, but also against heterologous viruses, including Georgia 2007/1, the genotype II strain of ASFV currently circulating in Eastern Europe.


Asunto(s)
Virus de la Fiebre Porcina Africana/genética , Fiebre Porcina Africana/prevención & control , Vacunas Atenuadas/administración & dosificación , Vacunas Virales/administración & dosificación , Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/virología , Virus de la Fiebre Porcina Africana/patogenicidad , Animales , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Células Cultivadas , Inmunización , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/virología , Porcinos , Proteínas Virales/genética
13.
Protein Expr Purif ; 133: 15-24, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28254554

RESUMEN

Trimeric autotransporters are surface-exposed proteins of Gram-negative bacteria belonging to the type V secretion system. They are involved in virulence and are targets for vaccine and diagnostic tool development, so optimal systems for their expression and purification are required. In the present study, the impact of the extended leader peptide of the Haemophilus parasuis virulence-associated trimeric autotransporters (VtaA) in its production as recombinant proteins in Escherichia coli was evaluated. The 13 genes encoding the VtaA1 to VtaA13 passenger domains of the strain Nagasaki were cloned in the pASK-IBA33plus plasmid and expressed in E. coli. Recombinant protein production was higher for truncated forms in which the entire leader peptide was deleted, and the recombinant protein accumulated in the cytoplasm of the cells. The yield of protein production of the different VtaAs was size dependent, and reached maximal amount at 2-4 h post -induction. The optimization of these conditions allowed to scale-up the production to obtain enough recombinant protein to immunize large animals.


Asunto(s)
Proteínas Bacterianas , Escherichia coli/metabolismo , Expresión Génica , Haemophilus parasuis/genética , Señales de Clasificación de Proteína , Proteínas Recombinantes de Fusión , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Escherichia coli/genética , Haemophilus parasuis/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética
14.
Virol J ; 11: 232, 2014 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-25539662

RESUMEN

BACKGROUND: Hepatitis E virus (HEV) has been reported in the human population and pigs are a recognized reservoir for HEV and a possible source of HEV transmission to humans. Spray-dried porcine plasma (SDPP) is an ingredient commonly used in feed for pigs around the world. Even though processing conditions used to produce SDPP should be adequate to inactivate HEV, it was of interest to analyze commercial SDPP samples for presence of genome and antibodies (AB) against HEV and to retrospectively analyze serum samples collected from pigs used in past experiments that had been fed diets containing either 0% or 8% SDPP to detect potential transmission of HEV as determined by seroconversion. RESULTS: Eighty-five commercial SDPP samples were analyzed by ELISA and 100% of them contained AB against HEV, while 22.4% (11 of 49 samples analyzed) were positive for HEV RNA. Frozen sera samples (n = 140) collected from 70 pigs used in past experiments that had been fed diets containing either 0% or 8% commercial SDPP was analyzed by ELISA for AB against HEV. Age of pigs at sera sampling ranged from 3 to 15 weeks and feeding duration of diets ranged from approximately 4 to 9 weeks. One lot of SDPP used in one experiment was analyzed and confirmed to contain HEV RNA. Regardless of the diet fed, some sera samples collected at the beginning of an experiment contained AB titer against HEV. These sera samples were collected from weaned pigs prior to feeding of the experimental diets and the HEV titer was probably from maternal origin. However, by the end of the experiments, HEV titer was not detected or had declined by more than 50% of the initial titer concentration. CONCLUSIONS: To our knowledge, this is the first study reporting presence of HEV AB titer and RNA in SDPP. Retrospective analysis of serum collected from pigs fed diets with SDPP revealed no indication of seroconversion to HEV. The results indicate that feeding SDPP in diets for pigs does not represent a risk of transmitting HEV, even though HEV genome may be detected in SDPP.


Asunto(s)
Alimentación Animal/virología , Dieta/métodos , Enfermedades Transmitidas por los Alimentos/veterinaria , Virus de la Hepatitis E/aislamiento & purificación , Hepatitis E/veterinaria , Plasma/virología , Enfermedades de los Porcinos/transmisión , Animales , Enfermedades Transmitidas por los Alimentos/virología , Anticuerpos Antihepatitis/análisis , Hepatitis E/transmisión , Hepatitis E/virología , Datos de Secuencia Molecular , ARN Viral/análisis , Estudios Retrospectivos , Análisis de Secuencia de ADN , Suero/inmunología , Suero/virología , Porcinos , Enfermedades de los Porcinos/virología
15.
J Virol ; 88(22): 13322-32, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25210179

RESUMEN

UNLABELLED: African swine fever is one of the most devastating pig diseases, against which there is no vaccine available. Recent work from our laboratory has demonstrated the protective potential of DNA vaccines encoding three African swine fever viral antigens (p54, p30, and the hemagglutinin extracellular domain) fused to ubiquitin. Partial protection was afforded in the absence of detectable antibodies prior to virus challenge, and survival correlated with the presence of a large number of hemagglutinin-specific CD8(+) T cells in blood. Aiming to demonstrate the presence of additional CD8(+) T-cell determinants with protective potential, an expression library containing more than 4,000 individual plasmid clones was constructed, each one randomly containing a Sau3AI restriction fragment of the viral genome (p54, p30, and hemagglutinin open reading frames [ORFs] excluded) fused to ubiquitin. Immunization of farm pigs with the expression library yielded 60% protection against lethal challenge with the virulent E75 strain. These results were further confirmed by using specific-pathogen-free pigs after challenging them with 10(4) hemadsorbing units (HAU) of the cell culture-adapted strain E75CV1. On this occasion, 50% of the vaccinated pigs survived the lethal challenge, and 2 out of the 8 immunized pigs showed no viremia or viral excretion at any time postinfection. In all cases, protection was afforded in the absence of detectable specific antibodies prior to challenge and correlated with the detection of specific T-cell responses at the time of sacrifice. In summary, our results clearly demonstrate the presence of additional protective determinants within the African swine fever virus (ASFV) genome and open up the possibility for their future identification. IMPORTANCE: African swine fever is a highly contagious disease of domestic and wild pigs that is endemic in many sub-Saharan countries, where it causes important economic losses and is currently in continuous expansion across Europe. Unfortunately, there is no treatment nor an available vaccine. Early attempts using attenuated vaccines demonstrated their potential to protect pigs against experimental infection. However, their use in the field remains controversial due to safety issues. Although inactive and subunit vaccines did not confer solid protection against experimental ASFV infection, our DNA vaccination results have generated new expectations, confirming the key role of T-cell responses in protection and the existence of multiple ASFV antigens with protective potential, more of which are currently being identified. Thus, the future might bring complex and safe formulations containing more than a single viral determinant to obtain broadly protective vaccines. We believe that obtaining the optimal vaccine formulation it is just a matter of time, investment, and willingness.


Asunto(s)
Virus de la Fiebre Porcina Africana/inmunología , Fiebre Porcina Africana/prevención & control , Inmunización/métodos , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Virus de la Fiebre Porcina Africana/genética , Animales , Expresión Génica , Biblioteca de Genes , Masculino , Plásmidos/administración & dosificación , Análisis de Supervivencia , Porcinos , Vacunas de ADN/administración & dosificación , Vacunas de ADN/genética , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
16.
Microbiology (Reading) ; 160(Pt 9): 1974-1984, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24951673

RESUMEN

Haemophilus parasuis is the causative agent of Glässer's disease, a systemic disorder characterized by polyarthritis, polyserositis and meningitis in pigs. Although it is well known that H. parasuis serovar 5 is the most prevalent serovar associated with the disease, the genetic differences among strains are only now being discovered. Genomes from two serovar 5 strains, SH0165 and 29755, are already available. Here, we present the draft genome of a third H. parasuis serovar 5 strain, the formal serovar 5 reference strain Nagasaki. An in silico genome subtractive analysis with full-length predicted genes of the three H. parasuis serovar 5 strains detected 95, 127 and 95 strain-specific genes (SSGs) for Nagasaki, SH0165 and 29755, respectively. We found that the genomic diversity within these three strains was high, in part because of a high number of mobile elements. Furthermore, a detailed analysis of large sequence polymorphisms (LSPs), encompassing regions ranging from 2 to 16 kb, revealed LSPs in virulence-related elements, such as a Toll-IL receptor, the AcrA multidrug efflux protein, an ATP-binding cassette (ABC) transporter, lipopolysaccharide-synthetizing enzymes and a tripartite ATP-independent periplasmic (TRAP) transporter. The whole-genome codon adaptation index (CAI) was also calculated and revealed values similar to other well-known bacterial pathogens. In addition, whole-genome SNP analysis indicated that nucleotide changes tended to be increased in membrane-related genes. This analysis provides further evidence that the genome of H. parasuis has been subjected to multiple lateral gene transfers (LGTs) and to fine-tuning of virulence factors, and has the potential for accelerated genome evolution.


Asunto(s)
Evolución Molecular , Genoma Bacteriano , Haemophilus parasuis/genética , Serogrupo , Animales , ADN Bacteriano/química , ADN Bacteriano/genética , Transferencia de Gen Horizontal , Variación Genética , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/clasificación , Haemophilus parasuis/aislamiento & purificación , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Porcinos , Enfermedades de los Porcinos/microbiología
17.
Vet Microbiol ; 164(3-4): 387-91, 2013 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-23510658

RESUMEN

Glässer's disease is a fibrinous polyserositis and polyarthritis of swine caused by the bacterium Haemophilus parasuis. Control by vaccination has been limited for years due to lack of cross-protection among strains. However, 6 trimeric autotransporters (VtaA) of the Nagasaki strain were shown to be antigenic and gave partial protection to a lethal challenge. The antigenic relationship among the VtaAs was examined by immunizing mice with individual VtaA showing that they cross-reacted by ELISA mainly with VtaA from the same group. When sera from protected and non-protected vaccinated piglets were examined no differences in VtaA cross-reactivity profiles were found. In addition, sera from commercial pigs immunized with a single VtaA (VtaA9) showed a wider range of VtaA cross-reaction, probably due to the previous colonization by H. parasuis. These results can help the development of new vaccine formulations against H. parasuis by allowing a rational VtaA selection.


Asunto(s)
Reacciones Cruzadas/inmunología , Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/inmunología , Haemophilus parasuis/patogenicidad , Enfermedades de los Porcinos/microbiología , Virulencia/inmunología , Animales , Antígenos Bacterianos/inmunología , Femenino , Infecciones por Haemophilus/microbiología , Inmunización , Ratones , Porcinos , Enfermedades de los Porcinos/inmunología , Vacunación/veterinaria
18.
Microbiology (Reading) ; 158(Pt 2): 436-447, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22075024

RESUMEN

The genome of the highly pathogenic Haemophilus parasuis Nagasaki strain (serovar 5) was sequenced to 99 % completion. A genomic comparison with two other pathogenic serovar 5 H. parasuis strains identified six genes per genome (bmaA1-bmaA6) encoding ß-barrel monomeric autotransporters, bmaA2 and bmaA3 being pseudogenes in at least one strain. The remaining encoded proteins were predicted to belong to the subtilisin (BmaA1 and BmaA4) and cysteine (BmaA5 and BmaA6) protease families. Allelic polymorphism was detected in other H. parasuis strains by comparative genomic hybridization using microarrays. Recombination events were observed, some of them leading to gene disruption in one of the three strains, although synteny around bmaA genes was conserved. These results suggest that bmaA genes are undergoing a process of reductive evolution. To evaluate their use as potential vaccine antigens, the products of the passenger domains of bmaA1, bmaA4, bmaA5 and bmaA6 were produced in Escherichia coli as recombinant proteins. They were detected by immunoblotting using sera of colostrum-deprived piglets recovering from a sublethal infection with H. parasuis (Nagasaki). The existence of specific antibodies after infection with H. parasuis also demonstrated in vivo expression. Using proteomics, only BmaA6 was detected in the in vitro-grown Nagasaki strain. Interestingly, the translocator domain was found in the outer membrane, while the passenger domain was located in supernatants. These results indicate that BmaA proteins could be considered as immunogen candidates to improve H. parasuis vaccines. However, their capacity to confer protective immunity needs to be studied further.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Evolución Molecular , Infecciones por Haemophilus/veterinaria , Haemophilus parasuis/genética , Enfermedades de los Porcinos/microbiología , Secuencia de Aminoácidos , Animales , Anticuerpos Antibacterianos/inmunología , Antígenos Bacterianos/química , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/química , Proteínas Bacterianas/inmunología , Regulación Bacteriana de la Expresión Génica , Genómica , Infecciones por Haemophilus/inmunología , Infecciones por Haemophilus/microbiología , Haemophilus parasuis/clasificación , Haemophilus parasuis/inmunología , Haemophilus parasuis/aislamiento & purificación , Datos de Secuencia Molecular , Filogenia , Estructura Terciaria de Proteína , Alineación de Secuencia , Porcinos , Enfermedades de los Porcinos/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...