Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 16: 1155754, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492522

RESUMEN

Adult zebrafish are capable of anatomical and functional recovery following severe spinal cord injury. Axon growth, glial bridging and adult neurogenesis are hallmarks of cellular regeneration during spinal cord repair. However, the correlation between these cellular regenerative processes and functional recovery remains to be elucidated. Whereas the majority of established functional regeneration metrics measure swim capacity, we hypothesize that gait quality is more directly related to neurological health. Here, we performed a longitudinal swim tracking study for 60 individual zebrafish spanning 8 weeks of spinal cord regeneration. Multiple swim parameters as well as axonal and glial bridging were integrated. We established rostral compensation as a new gait quality metric that highly correlates with functional recovery. Tensor component analysis of longitudinal data supports a correspondence between functional recovery trajectories and neurological outcomes. Moreover, our studies predicted and validated that a subset of functional regeneration parameters measured 1 to 2 weeks post-injury is sufficient to predict the regenerative outcomes of individual animals at 8 weeks post-injury. Our findings established new functional regeneration parameters and generated a comprehensive correlative database between various functional and cellular regeneration outputs.

2.
PLoS One ; 17(2): e0257591, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35108272

RESUMEN

Age-related physiological changes are most notable and best-studied late in life, while the nature of aging in early- or middle-aged individuals has not been explored as thoroughly. In C. elegans, many studies of movement vs. age generally focus on three distinct phases: sustained, youthful movement; onset of rapidly progressing impairment; and gross immobility. We investigated whether this first period of early-life adult movement is a sustained "healthy" level of high function followed by a discrete "movement catastrophe"-or whether there are early-life changes in movement that precede future physiological declines. To determine how movement varies during early adult life, we followed isolated individuals throughout life with a previously unachieved combination of duration and temporal resolution. By tracking individuals across the first six days of adulthood, we observed declines in movement starting as early as the first two days of adult life, as well as high interindividual variability in total daily movement. These findings suggest that movement is a highly dynamic behavior early in life, and that factors driving movement decline may begin acting as early as the first day of adulthood. Using simulation studies based on acquired data, we suggest that too-infrequent sampling in common movement assays limits observation of early-adult changes in motility, and we propose feasible strategies and a framework for designing assays with increased sensitivity for early movement declines.


Asunto(s)
Caenorhabditis elegans/fisiología , Movimiento , Envejecimiento , Animales
3.
Elife ; 102021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522488

RESUMEN

Across species, lifespan is highly variable among individuals within a population. Even genetically identical Caenorhabditis elegans reared in homogeneous environments are as variable in lifespan as outbred human populations. We hypothesized that persistent inter-individual differences in expression of key regulatory genes drives this lifespan variability. As a test, we examined the relationship between future lifespan and the expression of 22 microRNA promoter::GFP constructs. Surprisingly, expression of nearly half of these reporters, well before death, could effectively predict lifespan. This indicates that prospectively long- vs. short-lived individuals have highly divergent patterns of transgene expression and transcriptional regulation. The gene-regulatory processes reported on by two of the most lifespan-predictive transgenes do not require DAF-16, the FOXO transcription factor that is a principal effector of insulin/insulin-like growth factor (IGF-1) signaling. Last, we demonstrate a hierarchy of redundancy in lifespan-predictive ability among three transgenes expressed in distinct tissues, suggesting that they collectively report on an organism-wide, cell non-autonomous process that acts to set each individual's lifespan.


Asunto(s)
Caenorhabditis elegans/genética , Regulación de la Expresión Génica , Longevidad , MicroARNs/genética , Envejecimiento , Animales , Biomarcadores , Caenorhabditis elegans/metabolismo , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , MicroARNs/metabolismo , Transducción de Señal
4.
Methods Mol Biol ; 2144: 29-45, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410022

RESUMEN

We miniaturized standard, solid-phase C. elegans culture conditions to produce a system in which many isolated, individual C. elegans can be housed throughout their lives. This system, the "worm corral," is compatible with high-resolution brightfield and fluorescent microscopy, allowing imaging of fluorescent transgenes and morphological phenotypes from hatch until death. These culture devices can be constructed on the benchtop with commercially available reagents and standard laboratory equipment, making this an attainable solution for most labs.


Asunto(s)
Caenorhabditis elegans/crecimiento & desarrollo , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/métodos , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Microscopía Fluorescente , Fenotipo
5.
Hum Genet ; 139(3): 291-308, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31297598

RESUMEN

MicroRNAs (miRNAs) are short, non-coding RNAs that post-transcriptionally repress translation or induce mRNA degradation of target transcripts through sequence-specific binding. miRNAs target hundreds of transcripts to regulate diverse biological pathways and processes, including aging. Many microRNAs are differentially expressed during aging, generating interest in their use as aging biomarkers and roles as regulators of the aging process. In the invertebrates Caenorhabditis elegans and Drosophila, a number of miRNAs have been found to both positive and negatively modulate longevity through canonical aging pathways. Recent studies have also shown that miRNAs regulate age-associated processes and pathologies in a diverse array of mammalian tissues, including brain, heart, bone, and muscle. The review will present an overview of these studies, highlighting the role of individual miRNAs as biomarkers of aging and regulators of longevity and tissue-specific aging processes.


Asunto(s)
Envejecimiento/genética , Longevidad/genética , MicroARNs/genética , Animales , Humanos , Transducción de Señal/genética
6.
iScience ; 4: 180-189, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30240739

RESUMEN

Rod-shaped bacteria typically grow first via sporadic and dispersed elongation along their lateral walls and then via a combination of zonal elongation and constriction at the division site to form the poles of daughter cells. Although constriction comprises up to half of the cell cycle, its impact on cell size control and homeostasis has rarely been considered. To reveal the roles of cell elongation and constriction in bacterial size regulation during cell division, we captured the shape dynamics of Caulobacter crescentus with time-lapse structured illumination microscopy and used molecular markers as cell-cycle landmarks. We perturbed the constriction rate using a hyperconstriction mutant or fosfomycin ([(2R,3S)-3-methyloxiran-2-yl]phosphonic acid) inhibition. We report that the constriction rate contributes to both size control and homeostasis, by determining elongation during constriction and by compensating for variation in pre-constriction elongation on a single-cell basis.

7.
Cell Rep ; 22(10): 2730-2741, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29514100

RESUMEN

Organismal death is a process of systemic collapse whose mechanisms are less well understood than those of cell death. We previously reported that death in C. elegans is accompanied by a calcium-propagated wave of intestinal necrosis, marked by a wave of blue autofluorescence (death fluorescence). Here, we describe another feature of organismal death, a wave of body wall muscle contraction, or death contraction (DC). This phenomenon is accompanied by a wave of intramuscular Ca2+ release and, subsequently, of intestinal necrosis. Correlation of directions of the DC and intestinal necrosis waves implies coupling of these death processes. Long-lived insulin/IGF-1-signaling mutants show reduced DC and delayed intestinal necrosis, suggesting possible resistance to organismal death. DC resembles mammalian rigor mortis, a postmortem necrosis-related process in which Ca2+ influx promotes muscle hyper-contraction. In contrast to mammals, DC is an early rather than a late event in C. elegans organismal death. VIDEO ABSTRACT.


Asunto(s)
Caenorhabditis elegans/fisiología , Intestinos/patología , Rigor Mortis/patología , Adenosina Trifosfato/metabolismo , Envejecimiento/patología , Animales , Proteínas de Caenorhabditis elegans/genética , Señalización del Calcio , Muerte , Fluorescencia , Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Modelos Biológicos , Contracción Muscular , Músculos/patología , Mutación/genética , Necrosis , Receptor de Insulina/genética
8.
RNA ; 24(2): 159-172, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29114017

RESUMEN

Expression levels of many microRNAs (miRNAs) change during aging, notably declining globally in a number of organisms and tissues across taxa. However, little is known about the mechanisms or the biological relevance for this change. We investigated the network of genes that controls miRNA transcription and processing during C. elegans aging. We found that miRNA biogenesis genes are highly networked with transcription factors and aging-associated miRNAs. In particular, miR-71, known to influence life span and itself up-regulated during aging, represses alg-1/Argonaute expression post-transcriptionally during aging. Increased ALG-1 abundance in mir-71 loss-of-function mutants led to globally increased miRNA expression. Interestingly, these mutants demonstrated widespread mRNA expression dysregulation and diminished levels of variability both in gene expression and in overall life span. Thus, the progressive molecular decline often thought to be the result of accumulated damage over an organism's life may be partially explained by a miRNA-directed mechanism of age-associated decline.


Asunto(s)
Envejecimiento/genética , Regulación de la Expresión Génica , MicroARNs/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Retroalimentación Fisiológica , Redes Reguladoras de Genes , Longevidad/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Cell ; 171(6): 1368-1382.e23, 2017 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-29195076

RESUMEN

Blood platelets are critical for hemostasis and thrombosis and play diverse roles during immune responses. Despite these versatile tasks in mammalian biology, their skills on a cellular level are deemed limited, mainly consisting in rolling, adhesion, and aggregate formation. Here, we identify an unappreciated asset of platelets and show that adherent platelets use adhesion receptors to mechanically probe the adhesive substrate in their local microenvironment. When actomyosin-dependent traction forces overcome substrate resistance, platelets migrate and pile up the adhesive substrate together with any bound particulate material. They use this ability to act as cellular scavengers, scanning the vascular surface for potential invaders and collecting deposited bacteria. Microbe collection by migrating platelets boosts the activity of professional phagocytes, exacerbating inflammatory tissue injury in sepsis. This assigns platelets a central role in innate immune responses and identifies them as potential targets to dampen inflammatory tissue damage in clinical scenarios of severe systemic infection.


Asunto(s)
Infecciones Bacterianas/inmunología , Plaquetas/inmunología , Animales , Bacterias/clasificación , Plaquetas/citología , Vasos Sanguíneos/lesiones , Vasos Sanguíneos/patología , Calcio/metabolismo , Movimiento Celular , Polaridad Celular , Humanos , Inflamación/inmunología , Integrinas/metabolismo , Ratones , Miosinas/metabolismo , Neutrófilos/citología
10.
Lab Chip ; 17(22): 3909-3920, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29063084

RESUMEN

We have miniaturized standard culture techniques to rear arrays of isolated, individual C. elegans throughout their lives on solid gel media. The resulting apparatus is compatible with brightfield and fluorescence microscopy, enabling longitudinal studies of morphology and fluorescent transgene expression. Our culture system exploits a novel crosslinking reaction between a polyethylene glycol hydrogel and a silicone elastomer to constrain animals to individual "corrals" on the gel surface. These devices are simple to construct on the benchtop with commercially available reagents, and, unlike microfluidic isolation methods, do not rely on micropatterned materials. We demonstrate that this new culture method has negligible effects on the physiology of C. elegans compared to standard culture on agar plates. In addition, RNAi techniques are effective in this system. Finally, the hydrogel-silicone binding chemistry that we developed also allows traditional microfluidic devices to be covalently attached to gel substrates instead of glass.


Asunto(s)
Caenorhabditis elegans/fisiología , Técnicas de Cultivo/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Microscopía Fluorescente/instrumentación , Animales , Técnicas de Cultivo/métodos , Diseño de Equipo , Hidrogeles , Dispositivos Laboratorio en un Chip , Microscopía Fluorescente/métodos , Polietilenglicoles
11.
Nat Commun ; 8: 15458, 2017 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-28534519

RESUMEN

Ageing generates senescent pathologies, some of which cause death. Interventions that delay or prevent lethal pathologies will extend lifespan. Here we identify life-limiting pathologies in Caenorhabditis elegans with a necropsy analysis of worms that have died of old age. Our results imply the presence of multiple causes of death. Specifically, we identify two classes of corpse: early deaths with a swollen pharynx (which we call 'P deaths'), and later deaths with an atrophied pharynx (termed 'p deaths'). The effects of interventions on lifespan can be broken down into changes in the frequency and/or timing of either form of death. For example, glp-1 mutation only delays p death, while eat-2 mutation reduces P death. Combining pathology and mortality analysis allows mortality profiles to be deconvolved, providing biological meaning to complex survival and mortality profiles.


Asunto(s)
Envejecimiento/genética , Caenorhabditis elegans/fisiología , Muerte , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Escherichia coli , Longevidad/genética , Microscopía , Mutación , Estrés Oxidativo/efectos de los fármacos , Faringe/microbiología , Faringe/fisiopatología , Programas Informáticos , Cicatrización de Heridas
12.
Mol Cell Neurosci ; 80: 192-197, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-27265309

RESUMEN

The nematode Caenorhabditis elegans is widely used as a model organism in the field of neurobiology. The wiring of the C. elegans nervous system has been entirely mapped, and the animal's optical transparency allows for in vivo observation of neuronal activity. The nematode is also small in size, self-fertilizing, and inexpensive to cultivate and maintain, greatly lending to its utility as a whole-animal model for high-throughput screening (HTS) in the nervous system. However, the use of this organism in large-scale screens presents unique technical challenges, including reversible immobilization of the animal, parallel single-animal culture and containment, automation of laser surgery, and high-throughput image acquisition and phenotyping. These obstacles require significant modification of existing techniques and the creation of new C. elegans-based HTS platforms. In this review, we outline these challenges in detail and survey the novel technologies and methods that have been developed to address them.


Asunto(s)
Caenorhabditis elegans/anatomía & histología , Ensayos Analíticos de Alto Rendimiento , Sistema Nervioso/metabolismo , Animales , Humanos
13.
Cell Syst ; 3(4): 333-345.e4, 2016 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-27720632

RESUMEN

Although many genetic factors and lifestyle interventions are known to affect the mean lifespan of animal populations, the physiological variation displayed by individuals across their lifespans remains largely uncharacterized. Here, we use a custom culture apparatus to continuously monitor five aspects of aging physiology across hundreds of isolated Caenorhabditis elegans individuals kept in a constant environment from hatching until death. Aggregating these measurements into an overall estimate of senescence, we find two chief differences between longer- and shorter-lived individuals. First, though long- and short-lived individuals are physiologically equivalent in early adulthood, longer-lived individuals experience a lower rate of physiological decline throughout life. Second, and counter-intuitively, long-lived individuals have a disproportionately extended "twilight" period of low physiological function. While longer-lived individuals experience more overall days of good health, their proportion of good to bad health, and thus their average quality of life, is systematically lower than that of shorter-lived individuals. We conclude that, within a homogeneous population reared under constant conditions, the period of early-life good health is comparatively uniform, and the most plastic period in the aging process is end-of-life senescence.


Asunto(s)
Caenorhabditis elegans , Animales , Calidad de Vida
14.
Development ; 143(19): 3540-3548, 2016 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-27510972

RESUMEN

The complex cellular events that occur in response to fertilization are essential for mediating the oocyte-to-embryo transition. Here, we describe a comprehensive small-molecule screen focused on identifying compounds that affect early embryonic events in Caenorhabditis elegans We identify a single novel compound that disrupts early embryogenesis with remarkable stage and species specificity. The compound, named C22, primarily impairs eggshell integrity, leading to osmotic sensitivity and embryonic lethality. The C22-induced phenotype is dependent upon the upregulation of the LET-607/CREBH transcription factor and its candidate target genes, which primarily encode factors involved in diverse aspects of protein trafficking. Together, our data suggest that in the presence of C22, one or more key components of the eggshell are inappropriately processed, leading to permeable, inviable embryos. The remarkable specificity and reversibility of this compound will facilitate further investigation into the role and regulation of protein trafficking in the early embryo, as well as serve as a tool for manipulating the life cycle for other studies such as those involving aging.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriología , Caenorhabditis elegans/metabolismo , Animales , Proteínas de Caenorhabditis elegans/genética , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Oocitos/citología , Oocitos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Aging (Albany NY) ; 8(5): 889-98, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27070172

RESUMEN

In C. elegans, intestinal autofluorescence (sometimes referred to as lipofuscin or "age pigment") accumulates with age and is often used as a marker of health or the rate of aging. We show that this autofluorescent material is spectrally heterogeneous, and that materials that fluoresce under different excitation wavelengths have distinct biological properties. Red autofluorescence (visible with a TRITC filter set) correlates well with an individual's remaining days of life, and is therefore a candidate marker of health. In contrast, blue autofluorescence (via a DAPI filter set) is chiefly an indicator of an individual's incipient or recent demise. Thus, population averages of blue fluorescence essentially measure the fraction of dead or near-dead individuals. This is related to but distinct from the health of the living population. Green autofluorescence (via a FITC or GFP filter set) combines both properties, and is therefore ill suited as a marker of either death or health. Moreover, our results show that care must be taken to distinguish GFP expression near the time of death from full-body green autofluorescence. Finally, none of this autofluorescence increases after oxidative stress, suggesting that the material, or its biology in C. elegans, is distinct from lipofuscin as reported in the mammalian literature.


Asunto(s)
Caenorhabditis elegans/fisiología , Senescencia Celular/fisiología , Microscopía Fluorescente/métodos , Animales , Estrés Oxidativo/fisiología
16.
Nature ; 530(7588): 37-8, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26814974
17.
Aging Cell ; 15(1): 39-48, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26446764

RESUMEN

Using longitudinal data from a cohort of 1349 participants in the Framingham Heart Study, we show that as early as 28-38 years of age, almost 10% of variation in future lifespan can be predicted from simple clinical parameters. Specifically, we found diastolic and systolic blood pressure, blood glucose, weight, and body mass index (BMI) to be relevant to lifespan. These and similar parameters have been well-characterized as risk factors in the relatively narrow context of cardiovascular disease and mortality in middle to old age. In contrast, we demonstrate here that such measures can be used to predict all-cause mortality from mid-adulthood onward. Further, we find that different clinical measurements are predictive of lifespan in different age regimes. Specifically, blood pressure and BMI are predictive of all-cause mortality from ages 35 to 60, while blood glucose is predictive from ages 57 to 73. Moreover, we find that several of these parameters are best considered as measures of a rate of 'damage accrual', such that total historical exposure, rather than current measurement values, is the most relevant risk factor (as with pack-years of cigarette smoking). In short, we show that simple physiological measurements have broader lifespan-predictive value than indicated by previous work and that incorporating information from multiple time points can significantly increase that predictive capacity. In general, our results apply equally to both men and women, although some differences exist.


Asunto(s)
Presión Sanguínea/fisiología , Índice de Masa Corporal , Peso Corporal/fisiología , Enfermedades Cardiovasculares/mortalidad , Obesidad/complicaciones , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Factores de Riesgo
18.
Mol Microbiol ; 99(1): 88-110, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26365708

RESUMEN

The helical shape of the human stomach pathogen Helicobacter pylori has been suggested to provide mechanical advantage for penetrating the viscous stomach mucus layer. Using single-cell tracking and quantitative morphology analysis, we document marked variation in cell body helical parameters and flagellum number among H. pylori strains leading to distinct and broad speed distributions in broth and viscous gastric mucin media. These distributions reflect both temporal variation in swimming speed and morphologic variation within the population. Isogenic mutants with straight-rod morphology showed 7-21% reduction in speed and a lower fraction of motile bacteria. Mutational perturbation of flagellum number revealed a 19% increase in speed with 4 versus 3 median flagellum number. Resistive force theory modeling incorporating variation of both cell shape and flagellum number predicts qualitative speed differences of 10-30% among strains. However, quantitative comparisons suggest resistive force theory underestimates the influence of cell body shape on speed for helical shaped bacteria.


Asunto(s)
Adaptación Fisiológica , Flagelos/fisiología , Helicobacter pylori/fisiología , Locomoción , Rastreo Celular , Medios de Cultivo/química , Humanos , Mucinas/metabolismo , Análisis de la Célula Individual
19.
Nature ; 518(7537): 107-10, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25409146

RESUMEN

MicroRNAs are short non-coding RNAs expressed in different tissue and cell types that suppress the expression of target genes. As such, microRNAs are critical cogs in numerous biological processes, and dysregulated microRNA expression is correlated with many human diseases. Certain microRNAs, called oncomiRs, play a causal role in the onset and maintenance of cancer when overexpressed. Tumours that depend on these microRNAs are said to display oncomiR addiction. Some of the most effective anticancer therapies target oncogenes such as EGFR and HER2; similarly, inhibition of oncomiRs using antisense oligomers (that is, antimiRs) is an evolving therapeutic strategy. However, the in vivo efficacy of current antimiR technologies is hindered by physiological and cellular barriers to delivery into targeted cells. Here we introduce a novel antimiR delivery platform that targets the acidic tumour microenvironment, evades systemic clearance by the liver, and facilitates cell entry via a non-endocytic pathway. We find that the attachment of peptide nucleic acid antimiRs to a peptide with a low pH-induced transmembrane structure (pHLIP) produces a novel construct that could target the tumour microenvironment, transport antimiRs across plasma membranes under acidic conditions such as those found in solid tumours (pH approximately 6), and effectively inhibit the miR-155 oncomiR in a mouse model of lymphoma. This study introduces a new model for using antimiRs as anti-cancer drugs, which can have broad impacts on the field of targeted drug delivery.


Asunto(s)
Sistemas de Liberación de Medicamentos , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Linfoma/genética , Linfoma/terapia , MicroARNs/antagonistas & inhibidores , Microambiente Tumoral , Ácidos , Animales , Membrana Celular/metabolismo , Permeabilidad de la Membrana Celular , Modelos Animales de Enfermedad , Femenino , Concentración de Iones de Hidrógeno , Linfoma/patología , Masculino , Ratones , MicroARNs/genética , Terapia Molecular Dirigida , Nanopartículas/administración & dosificación , Nanopartículas/química , Oncogenes/genética , Ácidos Nucleicos de Péptidos/administración & dosificación , Ácidos Nucleicos de Péptidos/química , Ácidos Nucleicos de Péptidos/uso terapéutico , Microambiente Tumoral/genética
20.
PLoS One ; 8(11): e79679, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24223993

RESUMEN

N-cadherin is a cell adhesion molecule which is enriched at synapses. Binding of N-cadherin molecules to each other across the synaptic cleft has been postulated to stabilize adhesion between the presynaptic bouton and the postsynaptic terminal. N-cadherin is also required for activity-induced changes at synapses, including hippocampal long term potentiation and activity-induced spine expansion and stabilization. We hypothesized that these activity-dependent changes might involve changes in N-cadherin localization within synapses. To determine whether synaptic activity changes the localization of N-cadherin, we used structured illumination microscopy, a super-resolution approach which overcomes the conventional resolution limits of light microscopy, to visualize the localization of N-cadherin within synapses of hippocampal neurons. We found that synaptic N-cadherin exhibits a spectrum of localization patterns, ranging from puncta at the periphery of the synapse adjacent to the active zone to an even distribution along the synaptic cleft. Furthermore, the N-cadherin localization pattern within synapses changes during KCl depolarization and after transient synaptic stimulation. During KCl depolarization, N-cadherin relocalizes away from the central region of the synaptic cleft to the periphery of the synapse. In contrast, after transient synaptic stimulation with KCl followed by a period of rest in normal media, fewer synapses have N-cadherin present as puncta at the periphery and more synapses have N-cadherin present more centrally and uniformly along the synapse compared to unstimulated cells. This indicates that transient synaptic stimulation modulates N-cadherin localization within the synapse. These results bring new information to the structural organization and activity-induced changes occurring at synapses, and suggest that N-cadherin relocalization may contribute to activity dependent changes at synapses.


Asunto(s)
Cadherinas/metabolismo , Hipocampo/citología , Neuronas/citología , Sinapsis/metabolismo , Animales , Femenino , Microscopía , Embarazo , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA