Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
BMJ Glob Health ; 6(6)2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34193475

RESUMEN

INTRODUCTION: To reduce malaria transmission in very low-endemic settings, screening and treatment near index cases (reactive case detection (RACD)), is widely practised, but the rapid diagnostic tests (RDTs) used miss low-density infections. Reactive focal mass drug administration (rfMDA) may be safe and more effective. METHODS: We conducted a pragmatic cluster randomised controlled trial in Eswatini, a very low-endemic setting. 77 clusters were randomised to rfMDA using dihydroartemisin-piperaquine (DP) or RACD involving RDTs and artemether-lumefantrine. Interventions were delivered by the local programme. An intention-to-treat analysis was used to compare cluster-level cumulative confirmed malaria incidence among clusters with cases. Secondary outcomes included safety and adherence. RESULTS: From September 2015 to August 2017, 222 index cases from 47 clusters triggered 46 RACD events and 64 rfMDA events. RACD and rfMDA were delivered to 1455 and 1776 individuals, respectively. Index case coverage was 69.5% and 62.4% for RACD and rfMDA, respectively. Adherence to DP was 98.7%. No serious adverse events occurred. For rfMDA versus RACD, cumulative incidences (per 1000 person-years) of all malaria were 2.11 (95% CI 1.73 to 2.59) and 1.97 (95% CI 1.57 to 2.47), respectively; and of locally acquired malaria, they were 1.29 (95% CI 1.00 to 1.67) and 0.97 (95% CI 0.71 to 1.34), respectively. Adjusting for imbalance in baseline incidence, incidence rate ratio for rfMDA versus RACD was 0.95 (95% CI 0.55 to 1.65) for all malaria and 0.82 (95% CI 0.40 to 1.71) for locally acquired malaria. Similar results were obtained in a per-protocol analysis that excluded clusters with <80% index case coverage. CONCLUSION: In a very low-endemic, real-world setting, rfMDA using DP was safe, but did not lower incidence compared with RACD, potentially due to insufficient coverage and/or power. To assess impact of interventions in very low-endemic settings, improved coverage, complementary interventions and adaptive ring trial designs may be needed. TRIAL REGISTRATION NUMBER: NCT02315690.


Asunto(s)
Antimaláricos , Malaria , Antimaláricos/efectos adversos , Arteméter/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Artemisininas , Esuatini , Humanos , Malaria/tratamiento farmacológico , Malaria/epidemiología , Malaria/prevención & control , Administración Masiva de Medicamentos , Quinolinas
2.
Malar J ; 18(1): 315, 2019 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-31533740

RESUMEN

BACKGROUND: Surveillance is a core component of an effective system to support malaria elimination. Poor surveillance data will prevent countries from monitoring progress towards elimination and targeting interventions to the last remaining at-risk places. An evaluation of the performance of surveillance systems in 16 countries was conducted to identify key gaps which could be addressed to build effective systems for malaria elimination. METHODS: A standardized surveillance system landscaping was conducted between 2015 and 2017 in collaboration with governmental malaria programmes. Malaria surveillance guidelines from the World Health Organization and other technical bodies were used to identify the characteristics of an optimal surveillance system, against which systems of study countries were compared. Data collection was conducted through review of existing material and datasets, and interviews with key stakeholders, and the outcomes were summarized descriptively. Additionally, the cumulative fraction of incident infections reported through surveillance systems was estimated using surveillance data, government records, survey data, and other scientific sources. RESULTS: The landscaping identified common gaps across countries related to the lack of surveillance coverage in remote communities or in the private sector, the lack of adequate health information architecture to capture high quality case-based data, poor integration of data from other sources such as intervention information, poor visualization of generated information, and its lack of availability for making programmatic decisions. The median percentage of symptomatic cases captured by the surveillance systems in the 16 countries was estimated to be 37%, mostly driven by the lack of treatment-seeking in the public health sector (64%) or, in countries with large private sectors, the lack of integration of this sector within the surveillance system. CONCLUSIONS: The landscaping analysis undertaken provides a clear framework through which to identify multiple gaps in current malaria surveillance systems. While perfect systems are not required to eliminate malaria, closing the gaps identified will allow countries to deploy resources more efficiently, track progress, and accelerate towards malaria elimination. Since the landscaping undertaken here, several countries have addressed some of the identified gaps by improving coverage of surveillance, integrating case data with other information, and strengthening visualization and use of data.


Asunto(s)
Erradicación de la Enfermedad/métodos , Malaria/prevención & control , Vigilancia de la Población/métodos , Humanos , Sector Privado , Sector Público
3.
Malar J ; 16(1): 359, 2017 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-28886710

RESUMEN

BACKGROUND: As Swaziland progresses towards national malaria elimination, the importation of parasites into receptive areas becomes increasingly important. Imported infections have the potential to instigate local transmission and sustain local parasite reservoirs. METHODS: Travel histories from Swaziland's routine surveillance data from January 2010 to June 2014 were extracted and analysed. The travel patterns and demographics of rapid diagnostic test (RDT)-confirmed positive cases identified through passive and reactive case detection (RACD) were analysed and compared to those found to be negative through RACD. RESULTS: Of 1517 confirmed cases identified through passive surveillance, 67% reported travel history. A large proportion of positive cases reported domestic or international travel history (65%) compared to negative cases (10%). The primary risk factor for malaria infection in Swaziland was shown to be travel, more specifically international travel to Mozambique by 25- to 44-year old males, who spent on average 28 nights away. Maputo City, Inhambane and Gaza districts were the most likely travel destinations in Mozambique, and 96% of RDT-positive international travellers were either Swazi (52%) or Mozambican (44%) nationals, with Swazis being more likely to test negative. All international travellers were unlikely to have a bed net at home or use protection of any type while travelling. Additionally, paths of transmission, important border crossings and means of transport were identified. CONCLUSION: Results from this analysis can be used to direct national and well as cross-border targeting of interventions, over space, time and by sub-population. The results also highlight that collaboration between neighbouring countries is needed to tackle the importation of malaria at the regional level.


Asunto(s)
Malaria/epidemiología , Malaria/transmisión , Viaje , Adulto , Control de Enfermedades Transmisibles/estadística & datos numéricos , Emigración e Inmigración , Monitoreo Epidemiológico , Esuatini/epidemiología , Femenino , Humanos , Malaria/prevención & control , Masculino , Mozambique , Factores de Riesgo , Estaciones del Año , Sudáfrica , Viaje/estadística & datos numéricos
4.
Open Forum Infect Dis ; 4(2): ofx071, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28580365

RESUMEN

BACKGROUND: Low-quality housing may confer risk of malaria infection, but evidence in low transmission settings is limited. METHODS: To examine the relationship between individual level housing quality and locally acquired infection in children and adults, a population-based cross-sectional analysis was performed using existing surveillance data from the low transmission setting of Swaziland. From 2012 to 2015, cases were identified through standard diagnostics in health facilities and by loop-mediated isothermal amplification in active surveillance, with uninfected subjects being household members and neighbors. Housing was visually assessed in a home visit and then classified as low, high, or medium quality, based on housing components being traditional, modern, or both, respectively. RESULTS: Overall, 11426 individuals were included in the study: 10960 uninfected and 466 infected (301 symptomatic and 165 asymptomatic). Six percent resided in low-quality houses, 26% in medium-quality houses, and 68% in high-quality houses. In adjusted models, low- and medium-quality construction was associated with increased risk of malaria compared with high-quality construction (adjusted odds ratio [AOR], 2.11 and 95% confidence interval [CI], 1.26-3.53 for low vs high; AOR, 1.56 and 95% CI, 1.15-2.11 for medium vs high). The relationship was independent of vector control, which also conferred a protective effect (AOR, 0.67; 95% CI, .50-.90) for sleeping under an insecticide-treated bed net or a sprayed structure compared with neither. CONCLUSIONS: Our study adds to the limited literature on housing quality and malaria risk from low transmission settings. Housing improvements may offer an attractive and sustainable additional strategy to support countries in malaria elimination.

5.
Malar J ; 16(1): 232, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28571572

RESUMEN

BACKGROUND: Swaziland aims to eliminate malaria by 2020. However, imported cases from neighbouring endemic countries continue to sustain local parasite reservoirs and initiate transmission. As certain weather and climatic conditions may trigger or intensify malaria outbreaks, identification of areas prone to these conditions may aid decision-makers in deploying targeted malaria interventions more effectively. METHODS: Malaria case-surveillance data for Swaziland were provided by Swaziland's National Malaria Control Programme. Climate data were derived from local weather stations and remote sensing images. Climate parameters and malaria cases between 2001 and 2015 were then analysed using seasonal autoregressive integrated moving average models and distributed lag non-linear models (DLNM). RESULTS: The incidence of malaria in Swaziland increased between 2005 and 2010, especially in the Lubombo and Hhohho regions. A time-series analysis indicated that warmer temperatures and higher precipitation in the Lubombo and Hhohho administrative regions are conducive to malaria transmission. DLNM showed that the risk of malaria increased in Lubombo when the maximum temperature was above 30 °C or monthly precipitation was above 5 in. In Hhohho, the minimum temperature remaining above 15 °C or precipitation being greater than 10 in. might be associated with malaria transmission. CONCLUSIONS: This study provides a preliminary assessment of the impact of short-term climate variations on malaria transmission in Swaziland. The geographic separation of imported and locally acquired malaria, as well as population behaviour, highlight the varying modes of transmission, part of which may be relevant to climate conditions. Thus, the impact of changing climate conditions should be noted as Swaziland moves toward malaria elimination.


Asunto(s)
Clima , Malaria/epidemiología , Malaria/transmisión , Cambio Climático , Control de Enfermedades Transmisibles , Esuatini/epidemiología , Humanos , Incidencia , Dinámicas no Lineales
7.
Sci Rep ; 6: 29628, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27405532

RESUMEN

The long-term goal of the global effort to tackle malaria is national and regional elimination and eventually eradication. Fine scale multi-temporal mapping in low malaria transmission settings remains a challenge and the World Health Organisation propose use of surveillance in elimination settings. Here, we show how malaria incidence can be modelled at a fine spatial and temporal resolution from health facility data to help focus surveillance and control to population not attending health facilities. Using Namibia as a case study, we predicted the incidence of malaria, via a Bayesian spatio-temporal model, at a fine spatial resolution from parasitologically confirmed malaria cases and incorporated metrics on healthcare use as well as measures of uncertainty associated with incidence predictions. We then combined the incidence estimates with population maps to estimate clinical burdens and show the benefits of such mapping to identifying areas and seasons that can be targeted for improved surveillance and interventions. Fine spatial resolution maps produced using this approach were then used to target resources to specific local populations, and to specific months of the season. This remote targeting can be especially effective where the population distribution is sparse and further surveillance can be limited to specific local areas.


Asunto(s)
Malaria Falciparum/epidemiología , Vigilancia de la Población/métodos , Teorema de Bayes , Humanos , Incidencia , Malaria Falciparum/transmisión , Modelos Estadísticos , Namibia/epidemiología , Estaciones del Año , Agrupamiento Espacio-Temporal
8.
Malar J ; 14: 374, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26415959

RESUMEN

BACKGROUND: Sub-Saharan Africa is expected to show the greatest rates of urbanization over the next 50 years. Urbanization has shown a substantial impact in reducing malaria transmission due to multiple factors, including unfavourable habitats for Anopheles mosquitoes, generally healthier human populations, better access to healthcare, and higher housing standards. Statistical relationships have been explored at global and local scales, but generally only examining the effects of urbanization on single malaria metrics. In this study, associations between multiple measures of urbanization and a variety of malaria metrics were estimated at local scales. METHODS: Cohorts of children and adults from 100 households across each of three contrasting sub-counties of Uganda (Walukuba, Nagongera and Kihihi) were followed for 24 months. Measures of urbanicity included density of surrounding households, vegetation index, satellite-derived night-time lights, land cover, and a composite urbanicity score. Malaria metrics included the household density of mosquitoes (number of female Anopheles mosquitoes captured), parasite prevalence and malaria incidence. Associations between measures of urbanicity and malaria metrics were made using negative binomial and logistic regression models. RESULTS: One site (Walukuba) had significantly higher urbanicity measures compared to the two rural sites. In Walukuba, all individual measures of higher urbanicity were significantly associated with a lower household density of mosquitoes. The higher composite urbanicity score in Walukuba was also associated with a lower household density of mosquitoes (incidence rate ratio = 0.28, 95 % CI 0.17-0.48, p < 0.001) and a lower parasite prevalence (odds ratio, OR = 0.44, CI 0.20-0.97, p = 0.04). In one rural site (Kihihi), only a higher density of surrounding households was associated with a lower parasite prevalence (OR = 0.15, CI 0.07-0.34, p < 0.001). And, in only one rural site (Nagongera) was living where NDVI ≤0.45 associated with higher incidence of malaria (IRR = 1.35, CI 1.35-1.70, p = 0.01). CONCLUSIONS: Urbanicity has been shown previously to lead to a reduction in malaria transmission at large spatial scales. At finer scales, individual household measures of higher urbanicity were associated with lower mosquito densities and parasite prevalence only in the site that was generally characterized as being urban. The approaches outlined here can help better characterize urbanicity at the household level and improve targeting of control interventions.


Asunto(s)
Sistemas de Información Geográfica , Malaria Falciparum/epidemiología , Características de la Residencia/estadística & datos numéricos , Población Urbana/estadística & datos numéricos , Adulto , Animales , Anopheles , Niño , Preescolar , Estudios de Cohortes , Femenino , Humanos , Incidencia , Lactante , Plasmodium falciparum , Uganda/epidemiología
9.
Int J Health Geogr ; 13: 39, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-25304037

RESUMEN

BACKGROUND: Utilization of spatial statistics and Geographic Information Systems (GIS) technologies remain underrepresented in the community-engagement literature, despite its potential role in informing community outreach efforts and in identifying populations enthusiastic to participate in biomedical and health research. Such techniques are capable not only of examining the epidemiological relationship between the environment and a disease, but can also focus limited resources and strategically inform where on the landscape outreach efforts may be optimized. METHODS: These analyses present several spatial statistical techniques among the HealthStreet population, a community-engaged organization with aims to link underrepresented populations to medical and social care as well as opportunities to participate in University-sponsored research. Local Indicators of Spatial Association (LISA) and Getis-Ord Gi*(d) statistics are utilized to examine where cancer-related "hot spots" exist among minority and non-minority HealthStreet respondents within Alachua County, Florida, United States (US). Interest in research is also reported, by minority status and lifetime history of cancer. RESULTS: Overall, spatial clustering of cancer was observed to vary by minority status, suggesting disparities may exist among minorities and non-minorities in regards to where cancer is occurring. Specifically, significant hot spots of cancer were observed among non-minorities in more urban areas throughout Alachua County, Florida, US while more rural clusters were observed among minority members, specifically west and southwest of urban city limits. CONCLUSIONS: These results may help focus future outreach efforts to include underrepresented populations in health research, as well as focus preventative and palliative oncological care. Further, global community engaged studies and community outreach efforts outside of the United States may use similar methods to focus limited resources and recruit underrepresented populations into health research.


Asunto(s)
Relaciones Comunidad-Institución , Sistemas de Información Geográfica/estadística & datos numéricos , Neoplasias/epidemiología , Vigilancia de la Población/métodos , Adulto , Anciano , Femenino , Florida/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/diagnóstico , Neoplasias/terapia , Adulto Joven
10.
Vaccine ; 32 Suppl 1: A140-50, 2014 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-25091669

RESUMEN

India accounts for 23% of global rotavirus mortality in under-five children, with more than 100,000 deaths from rotavirus annually. Introduction of a vaccine in India is considered to be the most effective intervention for preventing rotavirus mortality. Recent research suggests that there is considerable variation in rotavirus mortality burden across regional, gender and socio-economic subpopulations within India. In addition, there is potential variability in who would likely receive rotavirus vaccine if introduced. We use available household data to estimate heterogeneity in rotavirus mortality risk, vaccination benefits, and cost-effectiveness across geographic and socio-economic groups within India. We account for heterogeneity by modeling estimated three-dose routine vaccinations as a proxy for a generalized rotavirus vaccine, and mortality for subpopulations of children aggregated by region and state, socio-economic status and sex, separately. Results are presented for six geographic regions and for Bihar, Uttar Pradesh, and Madhya Pradesh, three high mortality states accounting for 56% of national mortality estimates. Impact estimates accounting for disparities predict rotavirus vaccine introduction will prevent 35,000 deaths at an average cost of $118/DALY averted (7292 INR/DALY averted). Rotavirus vaccines are most cost-effective for the poor living in high mortality regions and states. Reductions in geographic and socio-economic disparities based on regional estimates could prevent an additional 9400 deaths annually, while reductions in socio-economic disparities in the three highest morality states alone could prevent an additional 10,600 deaths annually. Understanding the impact of heterogeneity can help improve strategies to maximize the benefits of rotavirus vaccination introduction, leading to fewer lives lost as a result of rotavirus disease.


Asunto(s)
Modelos Económicos , Infecciones por Rotavirus/prevención & control , Vacunas contra Rotavirus/economía , Vacunación/economía , Preescolar , Costo de Enfermedad , Análisis Costo-Beneficio , Geografía , Costos de la Atención en Salud , Disparidades en el Estado de Salud , Humanos , India/epidemiología , Lactante , Infecciones por Rotavirus/economía , Infecciones por Rotavirus/mortalidad , Factores Socioeconómicos
11.
Malar J ; 13: 169, 2014 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-24886389

RESUMEN

BACKGROUND: Identifying human and malaria parasite movements is important for control planning across all transmission intensities. Imported infections can reintroduce infections into areas previously free of infection, maintain 'hotspots' of transmission and import drug resistant strains, challenging national control programmes at a variety of temporal and spatial scales. Recent analyses based on mobile phone usage data have provided valuable insights into population and likely parasite movements within countries, but these data are restricted to sub-national analyses, leaving important cross-border movements neglected. METHODS: National census data were used to analyse and model cross-border migration and movement, using East Africa as an example. 'Hotspots' of origin-specific immigrants from neighbouring countries were identified for Kenya, Tanzania and Uganda. Populations of origin-specific migrants were compared to distance from origin country borders and population size at destination, and regression models were developed to quantify and compare differences in migration patterns. Migration data were then combined with existing spatially-referenced malaria data to compare the relative propensity for cross-border malaria movement in the region. RESULTS: The spatial patterns and processes for immigration were different between each origin and destination country pair. Hotspots of immigration, for example, were concentrated close to origin country borders for most immigrants to Tanzania, but for Kenya, a similar pattern was only seen for Tanzanian and Ugandan immigrants. Regression model fits also differed between specific migrant groups, with some migration patterns more dependent on population size at destination and distance travelled than others. With these differences between immigration patterns and processes, and heterogeneous transmission risk in East Africa and the surrounding region, propensities to import malaria infections also likely show substantial variations. CONCLUSION: This was a first attempt to quantify and model cross-border movements relevant to malaria transmission and control. With national census available worldwide, this approach can be translated to construct a cross-border human and malaria movement evidence base for other malaria endemic countries. The outcomes of this study will feed into wider efforts to quantify and model human and malaria movements in endemic regions to facilitate improved intervention planning, resource allocation and collaborative policy decisions.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Erradicación de la Enfermedad/métodos , Migración Humana , Malaria/epidemiología , Malaria/prevención & control , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Kenia/epidemiología , Malaria/transmisión , Masculino , Persona de Mediana Edad , Tanzanía/epidemiología , Uganda/epidemiología , Adulto Joven
12.
Malar J ; 13: 52, 2014 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-24512144

RESUMEN

BACKGROUND: As successful malaria control programmes re-orientate towards elimination, the identification of transmission foci, targeting of attack measures to high-risk areas and management of importation risk become high priorities. When resources are limited and transmission is varying seasonally, approaches that can rapidly prioritize areas for surveillance and control can be valuable, and the most appropriate attack measure for a particular location is likely to differ depending on whether it exports or imports malaria infections. METHODS/RESULTS: Here, using the example of Namibia, a method for targeting of interventions using surveillance data, satellite imagery, and mobile phone call records to support elimination planning is described. One year of aggregated movement patterns for over a million people across Namibia are analyzed, and linked with case-based risk maps built on satellite imagery. By combining case-data and movement, the way human population movements connect transmission risk areas is demonstrated. Communities that were strongly connected by relatively higher levels of movement were then identified, and net export and import of travellers and infection risks by region were quantified. These maps can aid the design of targeted interventions to maximally reduce the number of cases exported to other regions while employing appropriate interventions to manage risk in places that import them. CONCLUSIONS: The approaches presented can be rapidly updated and used to identify where active surveillance for both local and imported cases should be increased, which regions would benefit from coordinating efforts, and how spatially progressive elimination plans can be designed. With improvements in surveillance systems linked to improved diagnosis of malaria, detailed satellite imagery being readily available and mobile phone usage data continually being collected by network providers, the potential exists to make operational use of such valuable, complimentary and contemporary datasets on an ongoing basis in infectious disease control and elimination.


Asunto(s)
Teléfono Celular/estadística & datos numéricos , Monitoreo Epidemiológico , Malaria/epidemiología , Malaria/prevención & control , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Namibia/epidemiología , Medición de Riesgo , Imágenes Satelitales/estadística & datos numéricos , Topografía Médica , Viaje , Adulto Joven
13.
Malar J ; 12: 397, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24191976

RESUMEN

INTRODUCTION: The quantification of parasite movements can provide valuable information for control strategy planning across all transmission intensities. Mobile parasite carrying individuals can instigate transmission in receptive areas, spread drug resistant strains and reduce the effectiveness of control strategies. The identification of mobile demographic groups, their routes of travel and how these movements connect differing transmission zones, potentially enables limited resources for interventions to be efficiently targeted over space, time and populations. METHODS: National population censuses and household surveys provide individual-level migration, travel, and other data relevant for understanding malaria movement patterns. Together with existing spatially referenced malaria data and mathematical models, network analysis techniques were used to quantify the demographics of human and malaria movement patterns in Kenya, Uganda and Tanzania. Movement networks were developed based on connectivity and magnitudes of flow within each country and compared to assess relative differences between regions and demographic groups. Additional malaria-relevant characteristics, such as short-term travel and bed net use, were also examined. RESULTS: Patterns of human and malaria movements varied between demographic groups, within country regions and between countries. Migration rates were highest in 20-30 year olds in all three countries, but when accounting for malaria prevalence, movements in the 10-20 year age group became more important. Different age and sex groups also exhibited substantial variations in terms of the most likely sources, sinks and routes of migration and malaria movement, as well as risk factors for infection, such as short-term travel and bed net use. CONCLUSION: Census and survey data, together with spatially referenced malaria data, GIS and network analysis tools, can be valuable for identifying, mapping and quantifying regional connectivities and the mobility of different demographic groups. Demographically-stratified HPM and malaria movement estimates can provide quantitative evidence to inform the design of more efficient intervention and surveillance strategies that are targeted to specific regions and population groups.


Asunto(s)
Migración Humana , Malaria/epidemiología , Malaria/transmisión , Topografía Médica , Adolescente , Adulto , África Oriental/epidemiología , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Demografía , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Modelos Teóricos , Análisis Espacial , Adulto Joven
14.
PLoS One ; 8(1): e52971, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326367

RESUMEN

Human movement plays a key role in economies and development, the delivery of services, and the spread of infectious diseases. However, it remains poorly quantified partly because reliable data are often lacking, particularly for low-income countries. The most widely available are migration data from human population censuses, which provide valuable information on relatively long timescale relocations across countries, but do not capture the shorter-scale patterns, trips less than a year, that make up the bulk of human movement. Census-derived migration data may provide valuable proxies for shorter-term movements however, as substantial migration between regions can be indicative of well connected places exhibiting high levels of movement at finer time scales, but this has never been examined in detail. Here, an extensive mobile phone usage data set for Kenya was processed to extract movements between counties in 2009 on weekly, monthly, and annual time scales and compared to data on change in residence from the national census conducted during the same time period. We find that the relative ordering across Kenyan counties for incoming, outgoing and between-county movements shows strong correlations. Moreover, the distributions of trip durations from both sources of data are similar, and a spatial interaction model fit to the data reveals the relationships of different parameters over a range of movement time scales. Significant relationships between census migration data and fine temporal scale movement patterns exist, and results suggest that census data can be used to approximate certain features of movement patterns across multiple temporal scales, extending the utility of census-derived migration data.


Asunto(s)
Teléfono Celular/estadística & datos numéricos , Censos , Emigración e Inmigración/estadística & datos numéricos , Viaje/estadística & datos numéricos , Algoritmos , Emigrantes e Inmigrantes/estadística & datos numéricos , Emigración e Inmigración/tendencias , Geografía , Humanos , Kenia , Densidad de Población , Dinámica Poblacional , Población Rural/estadística & datos numéricos , Factores de Tiempo , Viaje/tendencias , Población Urbana/estadística & datos numéricos
15.
Malar J ; 11: 205, 2012 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-22703541

RESUMEN

Recent increases in funding for malaria control have led to the reduction in transmission in many malaria endemic countries, prompting the national control programmes of 36 malaria endemic countries to set elimination targets. Accounting for human population movement (HPM) in planning for control, elimination and post-elimination surveillance is important, as evidenced by previous elimination attempts that were undermined by the reintroduction of malaria through HPM. Strategic control and elimination planning, therefore, requires quantitative information on HPM patterns and the translation of these into parasite dispersion. HPM patterns and the risk of malaria vary substantially across spatial and temporal scales, demographic and socioeconomic sub-groups, and motivation for travel, so multiple data sets are likely required for quantification of movement. While existing studies based on mobile phone call record data combined with malaria transmission maps have begun to address within-country HPM patterns, other aspects remain poorly quantified despite their importance in accurately gauging malaria movement patterns and building control and detection strategies, such as cross-border HPM, demographic and socioeconomic stratification of HPM patterns, forms of transport, personal malaria protection and other factors that modify malaria risk. A wealth of data exist to aid filling these gaps, which, when combined with spatial data on transport infrastructure, traffic and malaria transmission, can answer relevant questions to guide strategic planning. This review aims to (i) discuss relevant types of HPM across spatial and temporal scales, (ii) document where datasets exist to quantify HPM, (iii) highlight where data gaps remain and (iv) briefly put forward methods for integrating these datasets in a Geographic Information System (GIS) framework for analysing and modelling human population and Plasmodium falciparum malaria infection movements.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Emigración e Inmigración , Malaria Falciparum/prevención & control , Migrantes , Viaje , Sistemas de Información Geográfica , Salud Global , Planificación en Salud/métodos , Humanos , Malaria/epidemiología , Malaria/prevención & control , Malaria/transmisión , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Plasmodium falciparum/aislamiento & purificación
16.
Popul Health Metr ; 10(1): 8, 2012 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-22591595

RESUMEN

The use of Global Positioning Systems (GPS) and Geographical Information Systems (GIS) in disease surveys and reporting is becoming increasingly routine, enabling a better understanding of spatial epidemiology and the improvement of surveillance and control strategies. In turn, the greater availability of spatially referenced epidemiological data is driving the rapid expansion of disease mapping and spatial modeling methods, which are becoming increasingly detailed and sophisticated, with rigorous handling of uncertainties. This expansion has, however, not been matched by advancements in the development of spatial datasets of human population distribution that accompany disease maps or spatial models.Where risks are heterogeneous across population groups or space or dependent on transmission between individuals, spatial data on human population distributions and demographic structures are required to estimate infectious disease risks, burdens, and dynamics. The disease impact in terms of morbidity, mortality, and speed of spread varies substantially with demographic profiles, so that identifying the most exposed or affected populations becomes a key aspect of planning and targeting interventions. Subnational breakdowns of population counts by age and sex are routinely collected during national censuses and maintained in finer detail within microcensus data. Moreover, demographic and health surveys continue to collect representative and contemporary samples from clusters of communities in low-income countries where census data may be less detailed and not collected regularly. Together, these freely available datasets form a rich resource for quantifying and understanding the spatial variations in the sizes and distributions of those most at risk of disease in low income regions, yet at present, they remain unconnected data scattered across national statistical offices and websites.In this paper we discuss the deficiencies of existing spatial population datasets and their limitations on epidemiological analyses. We review sources of detailed, contemporary, freely available and relevant spatial demographic data focusing on low income regions where such data are often sparse and highlight the value of incorporating these through a set of examples of their application in disease studies. Moreover, the importance of acknowledging, measuring, and accounting for uncertainty in spatial demographic datasets is outlined. Finally, a strategy for building an open-access database of spatial demographic data that is tailored to epidemiological applications is put forward.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...