Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Fish Physiol Biochem ; 50(3): 1281-1303, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38625479

RESUMEN

Supplementing a fishmeal-free diet with yeast extract improves rainbow trout (Oncorhynchus mykiss) growth performance and modulates the hepatic and intestinal transcriptomic response. These effects are often observed in the long term but are not well documented after short periods of fasting. Fasting for a few days is a common practice in fish farming, especially before handling the fish, such as for short sorting, tank transfers, and vaccinations. In the present study, rainbow trout were subjected to a 4-day fast and then refed, for 8 days, a conventional diet containing fishmeal (control diet) or alternative diets composed of terrestrial animal by-products supplemented or not with a yeast extract. During the refeeding period alone, most of the parameters considered did not differ significantly in response to the different feeds. Only the expression of claudin-15 was upregulated in fish fed the yeast-supplemented diet compared to the control diet. Conversely, fasting followed by refeeding significantly influenced most of the parameters analyzed. In the proximal intestine, the surface area of villi significantly increased, and the density of goblet cell tended to decrease during refeeding. Although no distinct plasma immune response or major signs of gut inflammation were observed, some genes involved in the structure, complement pathway, antiviral functions, coagulation, and endoplasmic reticulum stress response of the liver and intestine were significantly regulated by refeeding after fasting. These results indicate that short-term fasting, as commonly practiced in fish farming, significantly alters the physiology of the liver and intestine regardless of the composition of the diet.


Asunto(s)
Alimentación Animal , Dieta , Oncorhynchus mykiss , Animales , Oncorhynchus mykiss/fisiología , Alimentación Animal/análisis , Dieta/veterinaria , Ayuno , Acuicultura
2.
iScience ; 27(2): 108894, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38318367

RESUMEN

Amino acid (AA) transporters (AAT) control AA cellular fluxes across membranes, contributing to maintain cellular homeostasis. In this study, we took advantage of rainbow trout metabolic feature, which highly relies on dietary AA, to explore the cellular and physiological consequences of unbalanced diets on AAT dysregulations with a particular focus on cationic AAs (CAA), frequently underrepresented in plant-based diets. Results evidenced that 24 different CAAT are expressed in various trout tissues, part of which being subjected to AA- and CAA-dependent regulations, with y+LAT2 exchanger being prone to the strongest dysregulations. Moreover, CAA were shown to control two major AA-dependent activation pathways (namely mTOR and GCN2) but at different strength according to the CAA considered. A new feed formulation strategy has been put forward to improve specifically the CAA supplemented absorption in fish together with their growth performance. Such "precision formulation" strategy reveals high potential for nutrition practices, especially in aquaculture.

3.
Int J Mol Sci ; 23(6)2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35328356

RESUMEN

The replacement of fishmeal by plant proteins in aquafeeds imposes the use of synthetic methionine (MET) sources to balance the amino acid composition of alternative diets and so to meet the metabolic needs of fish of agronomic interest such as rainbow trout (RT-Oncorhynchus mykiss). Nonetheless, debates still exist to determine if one MET source is more efficiently used than another by fish. To address this question, the use of fish cell lines appeared a convenient strategy, since it allowed to perfectly control cell growing conditions notably by fully depleting MET from the media and studying which MET source is capable to restore cell growth/proliferation and metabolism when supplemented back. Thus, results of cell proliferation assays, Western blots, RT-qPCR and liquid chromatography analyses from two RT liver-derived cell lines revealed a better absorption and metabolization of DL-MET than DL-Methionine Hydroxy Analog (MHA) with the activation of the mechanistic Target Of Rapamycin (mTOR) pathway for DL-MET and the activation of integrated stress response (ISR) pathway for MHA. Altogether, the results clearly allow to conclude that both synthetic MET sources are not biologically equivalent, suggesting similar in vivo effects in RT liver and, therefore, questioning the MHA efficiencies in other RT tissues.


Asunto(s)
Oncorhynchus mykiss , Alimentación Animal/análisis , Animales , Línea Celular , Dieta , Hepatocitos/metabolismo , Hígado/metabolismo , Metionina/análogos & derivados , Metionina/química , Oncorhynchus mykiss/metabolismo
4.
Cells ; 9(8)2020 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-32707879

RESUMEN

Nowadays, aquaculture provides more than 50% of fish consumed worldwide but faces new issues that challenge its sustainability. One of them relies on the replacement of fish meal (FM) in aquaculture feeds by other protein sources without deeply affecting the whole organism's homeostasis. Multiple strategies have already been tested using in vivo approaches, but they hardly managed to cope with the multifactorial problems related to the complexities of fish biology together with new feed formulations. In this context, rainbow trout (RT) is particularly concerned by these problems, since, as a carnivorous fish, dietary proteins provide the amino acids required to supply most of its energetic metabolism. Surprisingly, we noticed that in vitro approaches considering RT cell lines as models to study RT amino acid metabolism were never previously used. Therefore, we decided to investigate if, and how, three major pathways described, in other species, to be regulated by amino acid and to control cellular homeostasis were functional in a RT cell line called RTH-149-namely, the mechanistic Target Of Rapamycin (mTOR), autophagy and the general control nonderepressible 2 (GCN2) pathways. Our results not only demonstrated that these three pathways were functional in RTH-149 cells, but they also highlighted some RT specificities with respect to the time response, amino acid dependencies and the activation levels of their downstream targets. Altogether, this article demonstrated, for the first time, that RT cell lines could represent an interesting alternative of in vivo experimentations for the study of fish nutrition-related questions.


Asunto(s)
Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Oncorhynchus mykiss/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacología , Animales , Acuicultura/métodos , Autofagia/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Cloroquina/farmacología , Medios de Cultivo/química , Expresión Génica/efectos de los fármacos , Homeostasis/efectos de los fármacos , Neoplasias Hepáticas/patología , Transducción de Señal/efectos de los fármacos
5.
Mol Biol Evol ; 37(10): 2887-2899, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32437540

RESUMEN

Chaperone-mediated autophagy (CMA) is a major pathway of lysosomal proteolysis recognized as a key player of the control of numerous cellular functions, and whose defects have been associated with several human pathologies. To date, this cellular function is presumed to be restricted to mammals and birds, due to the absence of an identifiable lysosome-associated membrane protein 2A (LAMP2A), a limiting and essential protein for CMA, in nontetrapod species. However, the recent identification of expressed sequences displaying high homology with mammalian LAMP2A in several fish species challenges that view and suggests that CMA likely appeared earlier during evolution than initially thought. In the present study, we provide a comprehensive picture of the evolutionary history of the LAMP2 gene in vertebrates and demonstrate that LAMP2 indeed appeared at the root of the vertebrate lineage. Using a fibroblast cell line from medaka fish (Oryzias latipes), we further show that the splice variant lamp2a controls, upon long-term starvation, the lysosomal accumulation of a fluorescent reporter commonly used to track CMA in mammalian cells. Finally, to address the physiological role of Lamp2a in fish, we generated knockout medaka for that specific splice variant, and found that these deficient fish exhibit severe alterations in carbohydrate and fat metabolisms, in consistency with existing data in mice deficient for CMA in liver. Altogether, our data provide the first evidence for a CMA-like pathway in fish and bring new perspectives on the use of complementary genetic models, such as zebrafish or medaka, for studying CMA in an evolutionary perspective.


Asunto(s)
Autofagia Mediada por Chaperones , Evolución Molecular , Proteína 2 de la Membrana Asociada a los Lisosomas/genética , Oryzias/genética , Animales , Metabolismo de los Hidratos de Carbono , Línea Celular , Exones , Fibroblastos/fisiología , Humanos , Metabolismo de los Lípidos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Ratones , Oryzias/metabolismo
6.
Circ Res ; 125(5): 535-551, 2019 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-31339449

RESUMEN

RATIONALE: In response to blood vessel wall injury, aberrant proliferation of vascular smooth muscle cells (SMCs) causes pathological remodeling. However, the controlling mechanisms are not completely understood. OBJECTIVE: We recently showed that the human long noncoding RNA, SMILR, promotes vascular SMCs proliferation by a hitherto unknown mechanism. Here, we assess the therapeutic potential of SMILR inhibition and detail the molecular mechanism of action. METHODS AND RESULTS: We used deep RNA-sequencing of human saphenous vein SMCs stimulated with IL (interleukin)-1α and PDGF (platelet-derived growth factor)-BB with SMILR knockdown (siRNA) or overexpression (lentivirus), to identify SMILR-regulated genes. This revealed a SMILR-dependent network essential for cell cycle progression. In particular, we found using the fluorescent ubiquitination-based cell cycle indicator viral system that SMILR regulates the late mitotic phase of the cell cycle and cytokinesis with SMILR knockdown resulting in ≈10% increase in binucleated cells. SMILR pulldowns further revealed its potential molecular mechanism, which involves an interaction with the mRNA of the late mitotic protein CENPF (centromere protein F) and the regulatory Staufen1 RNA-binding protein. SMILR and this downstream axis were also found to be activated in the human ex vivo vein graft pathological model and in primary human coronary artery SMCs and atherosclerotic plaques obtained at carotid endarterectomy. Finally, to assess the therapeutic potential of SMILR, we used a novel siRNA approach in the ex vivo vein graft model (within the 30 minutes clinical time frame that would occur between harvest and implant) to assess the reduction of proliferation by EdU incorporation. SMILR knockdown led to a marked decrease in proliferation from ≈29% in controls to ≈5% with SMILR depletion. CONCLUSIONS: Collectively, we demonstrate that SMILR is a critical mediator of vascular SMC proliferation via direct regulation of mitotic progression. Our data further reveal a potential SMILR-targeting intervention to limit atherogenesis and adverse vascular remodeling.


Asunto(s)
Proliferación Celular/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Microfilamentos/metabolismo , Mitosis/fisiología , Músculo Liso Vascular/metabolismo , ARN Largo no Codificante/biosíntesis , Remodelación Vascular/fisiología , Ciclo Celular/fisiología , Células Cultivadas , Proteínas Cromosómicas no Histona/genética , Humanos , Proteínas de Microfilamentos/genética , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/metabolismo , Técnicas de Cultivo de Órganos , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Vena Safena/citología , Vena Safena/metabolismo
7.
Cells ; 8(2)2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30678104

RESUMEN

Vascular smooth muscle cell (VSMC) dedifferentiation is a common feature of vascular disorders leading to pro-migratory and proliferative phenotypes, a process induced through growth factor and cytokine signaling cascades. Recently, many studies have demonstrated that small non-coding RNAs (miRNAs) can induce phenotypic effects on VSMCs in response to vessel injury. However, most studies have focused on the contribution of individual miRNAs. Our study aimed to conduct a detailed and unbiased analysis of both guide and passenger miRNA expression in vascular cells in vitro and disease models in vivo. We analyzed 100 miRNA stem loops by TaqMan Low Density Array (TLDA) from primary VSMCs in vitro. Intriguingly, we found that a larger proportion of the passenger strands was significantly dysregulated compared to the guide strands after exposure to pathological stimuli, such as platelet-derived growth factor (PDGF) and IL-1α. Similar findings were observed in response to injury in porcine vein grafts and stent models in vivo. In these studies, we reveal that the miRNA passenger strands are predominantly dysregulated in response to vascular injury.


Asunto(s)
Vasos Sanguíneos/lesiones , Regulación de la Expresión Génica , MicroARNs/metabolismo , Animales , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/patología , Citocinas/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Masculino , MicroARNs/genética , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Porcinos
8.
J Hypertens ; 37(1): 154-166, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30063637

RESUMEN

OBJECTIVES: To assess the acute effects of nicotine-containing electronic cigarettes versus tobacco smoking on vascular and respiratory function and circulating microparticles, particularly platelet microparticles (PMPs, biomarker of haemostasis/thrombosis) and endothelial microparticles (EMPs, biomarker of endothelial function). METHODS: Heart rate (HR), blood pressure, reactive hyperaemia index (RHI, microvascular reactivity), augmentation index (arterial stiffness) and respiratory function were assessed in 20 smokers immediately before and after electronic cigarettes use and tobacco smoking. The number of microparticles was determined by flow cytometry using counting beads as a reference. Labelling with Annexin-V was used to detect the total microparticle fraction. EMPs were characterized as CD31+CD42- and PMPs as CD31+CD42+. RESULTS: HR increased after electronic cigarettes use and tobacco smoking (P < 0.001), whereas blood pressure remained unchanged (P > 0.05). RHI (P = 0.006), augmentation index (P = 0.010) but not augmentation index standardized to HR 75 bpm (P > 0.05) increased with electronic cigarettes use but not with tobacco smoking. Following tobacco smoking, there was a significant increase in total microparticles (P < 0.001), EMPs (P < 0.001) and PMPs (P < 0.001). In contrast, electronic cigarettes were only associated with an increase in PMPs (P < 0.001), with no significant changes in the total microparticle fraction or EMPs (all P > 0.05). Peak expiratory flow significantly decreased following electronic cigarettes use (P = 0.019). CONCLUSION: Our results demonstrate that acute exposure to tobacco smoking as well as electronic cigarettes influences vascular and respiratory function. Where tobacco smoking significantly increased microparticle formation, indicative of possible endothelial injury, electronic cigarettes use induced vasoreactivity and decreased peak expiratory flow. These findings suggest that both electronic cigarettes and tobacco smoking negatively impact vascular function.


Asunto(s)
Presión Sanguínea/fisiología , Fumar Cigarrillos , Frecuencia Cardíaca/fisiología , Vapeo , Micropartículas Derivadas de Células/fisiología , Fumar Cigarrillos/sangre , Fumar Cigarrillos/fisiopatología , Estudios Cruzados , Humanos , Respiración , Vapeo/sangre , Vapeo/fisiopatología
9.
Sci Rep ; 8(1): 4694, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29549271

RESUMEN

RNA interference (RNAi)-based gene therapy has great potential in cancer and infectious disease treatment to correct abnormal up-regulation of gene expression. We show a new original method uses synthetic microRNAs combined with a thermo-inducible promoter to reduce specific gene expression. The targeted gene is the luciferase firefly reporter gene overexpressed in a subcutaneous tumor which allows the RNAi monitoring by bioluminescence imaging (BLI). The inducible inhibition was first demonstrated in vitro using genetically modified cells lines and then in vivo using the corresponding xenograft model in mice. Achieving spatio-temporal control, we demonstrate the feasibility to induce, in vivo, a specific gene inhibition on demand. Future applications of this RNAi-based gene therapy, which can be restricted to pathological tissue, would offer wide-ranging potential for disease treatment.


Asunto(s)
Fiebre , Silenciador del Gen , Glioblastoma/patología , Luciferasas de Luciérnaga/metabolismo , Mediciones Luminiscentes , MicroARNs/genética , Imagen Óptica/métodos , Animales , Femenino , Glioblastoma/genética , Proteínas HSP70 de Choque Térmico/genética , Humanos , Luciferasas de Luciérnaga/antagonistas & inhibidores , Luciferasas de Luciérnaga/genética , Ratones , Ratones Endogámicos NOD , Ratones SCID , Regiones Promotoras Genéticas , ARN Interferente Pequeño , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Pulm Circ ; 6(1): 109-17, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27162619

RESUMEN

Dysregulation of microRNAs (miRNAs) can contribute to the etiology of diseases, including pulmonary arterial hypertension (PAH). Here we investigated a potential role for the miR-214 stem loop miRNA and the closely linked miR-199a miRNAs in PAH. All 4 miRNAs were upregulated in the lung and right ventricle (RV) in mice and rats exposed to the Sugen (SU) 5416 hypoxia model of PAH. Further, expression of the miRNAs was increased in pulmonary artery smooth muscle cells exposed to transforming growth factor ß1 but not BMP4. We then examined miR-214(-/-) mice exposed to the SU 5416 hypoxia model of PAH or normoxic conditions and littermate controls. There were no changes in RV systolic pressure or remodeling observed between the miR-214(-/-) and wild-type hypoxic groups. However, we observed a significant increase in RV hypertrophy (RVH) in hypoxic miR-214(-/-) male mice compared with controls. Further, we identified that the validated miR-214 target phosphatase and tensin homolog was upregulated in miR-214(-/-) mice. Thus, miR-214 stem loop loss leads to elevated RVH and may contribute to the heart failure associated with PAH.

11.
Circulation ; 133(21): 2050-65, 2016 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-27052414

RESUMEN

BACKGROUND: Phenotypic switching of vascular smooth muscle cells from a contractile to a synthetic state is implicated in diverse vascular pathologies, including atherogenesis, plaque stabilization, and neointimal hyperplasia. However, very little is known about the role of long noncoding RNA (lncRNA) during this process. Here, we investigated a role for lncRNAs in vascular smooth muscle cell biology and pathology. METHODS AND RESULTS: Using RNA sequencing, we identified >300 lncRNAs whose expression was altered in human saphenous vein vascular smooth muscle cells following stimulation with interleukin-1α and platelet-derived growth factor. We focused on a novel lncRNA (Ensembl: RP11-94A24.1), which we termed smooth muscle-induced lncRNA enhances replication (SMILR). Following stimulation, SMILR expression was increased in both the nucleus and cytoplasm, and was detected in conditioned media. Furthermore, knockdown of SMILR markedly reduced cell proliferation. Mechanistically, we noted that expression of genes proximal to SMILR was also altered by interleukin-1α/platelet-derived growth factor treatment, and HAS2 expression was reduced by SMILR knockdown. In human samples, we observed increased expression of SMILR in unstable atherosclerotic plaques and detected increased levels in plasma from patients with high plasma C-reactive protein. CONCLUSIONS: These results identify SMILR as a driver of vascular smooth muscle cell proliferation and suggest that modulation of SMILR may be a novel therapeutic strategy to reduce vascular pathologies.


Asunto(s)
Proliferación Celular/fisiología , Músculo Liso Vascular/fisiología , Miocitos del Músculo Liso/fisiología , ARN Largo no Codificante/fisiología , Proteínas de Caenorhabditis elegans , Células Cultivadas , Técnicas de Silenciamiento del Gen , Humanos , Músculo Liso Vascular/citología , Vena Safena/citología , Vena Safena/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...