Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 62: 102669, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933393

RESUMEN

Brain injury is accompanied by neuroinflammation, accumulation of extracellular glutamate and mitochondrial dysfunction, all of which cause neuronal death. The aim of this study was to investigate the impact of these mechanisms on neuronal death. Patients from the neurosurgical intensive care unit suffering aneurysmal subarachnoid hemorrhage (SAH) were recruited retrospectively from a respective database. In vitro experiments were performed in rat cortex homogenate, primary dissociated neuronal cultures, B35 and NG108-15 cell lines. We employed methods including high resolution respirometry, electron spin resonance, fluorescent microscopy, kinetic determination of enzymatic activities and immunocytochemistry. We found that elevated levels of extracellular glutamate and nitric oxide (NO) metabolites correlated with poor clinical outcome in patients with SAH. In experiments using neuronal cultures we showed that the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the glutamate-dependent segment of the tricarboxylic acid (TCA) cycle, is more susceptible to the inhibition by NO than mitochondrial respiration. Inhibition of OGDHC by NO or by succinyl phosphonate (SP), a highly specific OGDHC inhibitor, caused accumulation of extracellular glutamate and neuronal death. Extracellular nitrite did not substantially contribute to this NO action. Reactivation of OGDHC by its cofactor thiamine (TH) reduced extracellular glutamate levels, Ca2+ influx into neurons and cell death rate. Salutary effect of TH against glutamate toxicity was confirmed in three different cell lines. Our data suggest that the loss of control over extracellular glutamate, as described here, rather than commonly assumed impaired energy metabolism, is the critical pathological manifestation of insufficient OGDHC activity, leading to neuronal death.


Asunto(s)
Ácido Glutámico , Complejo Cetoglutarato Deshidrogenasa , Ratas , Animales , Ácido Glutámico/metabolismo , Estudios Retrospectivos , Citoplasma/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Tiamina/metabolismo , Tiamina/farmacología , Óxido Nítrico/metabolismo
2.
Acta Neurochir Suppl ; 131: 103-107, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33839828

RESUMEN

Brain biomarkers (protein S100b and neuron-specific enolase (NSE)), antibodies (aAb) to the NR2 subunit of N-methyl-D-aspartate (NR2(NMDA)) and to the GluR1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (GluR1(AMPA)) subtype of glutamate receptors (GluR), NR2 and AMPA peptides, nitrogen oxides (NOx; "nitrites and nitrates"), and 3-nitrotyrosine (NT) were measured in blood from 159 children after mild traumatic brain injury (mTBI), moderate traumatic brain injury (mdTBI), or severe traumatic brain injury (sTBI) within 1-2 days and at intervals during the first 15 days after brain trauma. S100b and NSE levels on the first day were not a strict criterion for injury outcomes. Children with mTBI had the most significant elevations in antibodies to NR2(NMDA) and AMPA peptides, a slight increase in NOx, and, in 25% of cases, appearance of NT in the blood right after TBI. The lowest level of antibodies to NR2(NMDA) GluR detected shortly after the initial TBI was found in children with sTBI, with a negative outcome. The opposite characters of antibodies to NR2(NMDA) on the first day in children with mild and moderate versus severe TBI may be associated with an important mechanism aimed at protecting neurons from Glu excitotoxicity. We hypothesized that a slight increase in NOx after the onset of TBI rapidly activates the innate immune system and contributes to an increase in antibodies to NR2(NMDA). An increase in the AMPA peptide level in mTBI may be early signs of diffuse axonal injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Biomarcadores , Encéfalo , Niño , Humanos , Fosfopiruvato Hidratasa , Receptores de N-Metil-D-Aspartato
3.
Biochim Biophys Acta Gen Subj ; 1865(5): 129847, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33453305

RESUMEN

BACKGROUND: Disorders of mitochondrial Ca2+ homeostasis play a key role in the glutamate excitotoxicity of brain neurons. DS16570511 (DS) is a new penetrating inhibitor of mitochondrial Ca2+ uniporter complex (MCUC). The paper examines the effects of DS on the cultivated cortical neurons and isolated mitochondria of the rat brain. METHODS: The functions of neurons and mitochondria were examined using fluorescence microscopy, XF24 microplate-based сell respirometry, ion-selective microelectrodes, spectrophotometry, and polarographic technique. RESULTS: At the doses of 30 and 45 µM, DS reliably slowed down the onset of glutamate-induced delayed calcium deregulation of neurons and suppressed their death. 30 µM DS caused hyperpolarization of mitochondria of resting neurons, and 45 µM DS temporarily depolarized neuronal mitochondria. It was also demonstrated that 30-60 µM DS stimulated cellular respiration. DS was shown to suppress Ca2+ uptake by isolated brain mitochondria. In addition, DS inhibited ADP-stimulated mitochondrial respiration and ADP-induced decrease in the mitochondrial membrane potential. It was found that DS inhibited the activity of complex II of the respiratory chain. In the presence of Ca2+, high DS concentrations caused a collapse of the mitochondrial membrane potential. CONCLUSIONS: The data obtained indicate that, in addition to the inhibition of MCUC, DS affects the main energy-transducing functions of mitochondria. GENERAL SIGNIFICANCE: The using DS as a tool for studying MCUC and its functional role in neuronal cells should be done with care, bearing in mind multiple effects of DS, a proper evaluation of which would require multivariate analysis.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Calcio/metabolismo , Neuronas/efectos de los fármacos , Animales , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Células Cultivadas , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neuronas/citología , Neuronas/metabolismo , Ratas
4.
Biophys J ; 119(9): 1712-1723, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33086042

RESUMEN

Neural activity depends on the maintenance of ionic and osmotic homeostasis. Under these conditions, the cell volume must be regulated to maintain optimal neural function. A disturbance in the neuronal volume regulation often occurs in pathological conditions such as glutamate excitotoxicity. The cell volume, mechanical properties, and actin cytoskeleton structure are tightly connected to achieve the cell homeostasis. Here, we studied the effects of glutamate-induced excitotoxicity, external osmotic pressure, and inhibition of actin polymerization on the viscoelastic properties and volume of neurons. Atomic force microscopy was used to map the viscoelastic properties of neurons in time-series experiments to observe the dynamical changes and a possible recovery. The data obtained on cultured rat cortical neurons were compared with the data obtained on rat fibroblasts. The neurons were found to be more responsive to the osmotic challenges but less sensitive to the inhibition of actin polymerization than fibroblasts. The alterations of the viscoelastic properties caused by glutamate excitotoxicity were similar to those induced by the hypoosmotic stress, but, in contrast to the latter, they did not recover after the glutamate removal. These data were consistent with the dynamic volume changes estimated using ratiometric fluorescent dyes. The recovery after the glutamate-induced excitotoxicity was slow or absent because of a steady increase in intracellular calcium and sodium concentrations. The viscoelastic parameters and their changes were related to such parameters as the actin cortex stiffness, tension, and cytoplasmic viscosity.


Asunto(s)
Ácido Glutámico , Neuronas , Animales , Calcio , Células Cultivadas , Corteza Cerebral , Ácido Glutámico/toxicidad , Ósmosis , Ratas , Viscosidad
5.
J Neurosci Res ; 93(12): 1865-73, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26346533

RESUMEN

Neurotrophin-3 (NT-3) belongs to the family of highly conserved dimeric growth factors that controls the differentiation and activity of various neuronal populations. Mammals contain both the mature (NT-3) and the precursor (pro-NT-3) forms of neurotrophin. Members of the neurotrophin family are involved in the regulation of calcium homeostasis in neurons; however, the role of NT-3 and pro-NT-3 in this process remains unclear. The current study explores the effects of NT-3 and pro-NT-3 on disturbed calcium homeostasis and decline of mitochondrial potential induced by a neurotoxic concentration of glutamate (Glu; 100 µM) in the primary culture of rat cerebellar granule cells. In this Glu excitotoxicity model, mature NT-3 had no effect on the induced changes in Ca²âº homeostasis. In contrast, pro-NT-3 decreased the period of delayed calcium deregulation (DCD) and concurrent strong mitochondrial depolarization. According to the amplitude of the increase in the intracellular free Ca²âº concentration ([Ca²âº]i ) and Fura-2 fluorescence quenching by Mn²âº within the first 20 sec of exposure to Glu, pro-NT-3 had no effect on the initial rate of Ca²âº entry into neurons. During the lag period preceding DCD, the mean amplitude of [Ca²âº]i rise was 1.2-fold greater in the presence of pro-NT-3 than in the presence of Glu alone (1.67 ± 0.07 and 1.39 ± 0.04, respectively, P < 0.05). The Glu-induced changes in Са²âº homeostasis in the presence of pro-NT-3 likely are due to the decreased rate of Са²âº removal from the cytosol during the DCD latency period.


Asunto(s)
Calcio/metabolismo , Cerebelo/citología , Ácido Glutámico/farmacología , Homeostasis/efectos de los fármacos , Neuronas/efectos de los fármacos , Neurotrofina 3/metabolismo , Precursores de Proteínas/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Humanos , Masculino , Ratas
6.
J Mol Signal ; 8(1): 11, 2013 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-24094269

RESUMEN

BACKGROUND: Insulin receptors are widely distributed in the brain, where they play roles in synaptic function, memory formation, and neuroprotection. Autophosphorylation of the receptor in response to insulin stimulation is a critical step in receptor activation. In neurons, insulin stimulation leads to a rise in mitochondrial H2O2 production, which plays a role in receptor autophosphorylation. However, the kinetic characteristics of the H2O2 signal and its functional relationships with the insulin receptor during the autophosphorylation process in neurons remain unexplored to date. RESULTS: Experiments were carried out in culture of rat cerebellar granule neurons. Kinetic study showed that the insulin-induced H2O2 signal precedes receptor autophosphorylation and represents a single spike with a peak at 5-10 s and duration of less than 30 s. Mitochondrial complexes II and, to a lesser extent, I are involved in generation of the H2O2 signal. The mechanism by which insulin triggers the H2O2 signal involves modulation of succinate dehydrogenase activity. Insulin dose-response for receptor autophosphorylation is well described by hyperbolic function (Hill coefficient, nH, of 1.1±0.1; R2=0.99). N-acetylcysteine (NAC), a scavenger of H2O2, dose-dependently inhibited receptor autophosphorylation. The observed dose response is highly sigmoidal (Hill coefficient, nH, of 8.0±2.3; R2=0.97), signifying that insulin receptor autophosphorylation is highly ultrasensitive to the H2O2 signal. These results suggest that autophosphorylation occurred as a gradual response to increasing insulin concentrations, only if the H2O2 signal exceeded a certain threshold. Both insulin-stimulated receptor autophosphorylation and H2O2 generation were inhibited by pertussis toxin, suggesting that a pertussis toxin-sensitive G protein may link the insulin receptor to the H2O2-generating system in neurons during the autophosphorylation process. CONCLUSIONS: In this study, we demonstrated for the first time that the receptor autophosphorylation occurs only if mitochondrial H2O2 signal exceeds a certain threshold. This finding provides novel insights into the mechanisms underlying neuronal response to insulin. The neuronal insulin receptor is activated if two conditions are met: 1) insulin binds to the receptor, and 2) the H2O2 signal surpasses a certain threshold, thus, enabling receptor autophosphorylation in all-or-nothing manner. Although the physiological rationale for this control remains to be determined, we propose that malfunction of mitochondrial H2O2 signaling may lead to the development of cerebral insulin resistance.

7.
Front Mol Neurosci ; 5: 102, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23335879

RESUMEN

ATP in neurons is commonly believed to be synthesized mostly by mitochondria via oxidative phosphorylation. Neuronal mitochondria have been studied primarily in culture, i.e., in neurons isolated either from embryos or from neonatal pups. Although it is generally assumed that both embryonic and postnatal cultured neurons derive their ATP from mitochondrial oxidative phosphorylation, this has never been tested experimentally. We expressed the FRET-based ATP sensor AT1.03 in cultured hippocampal neurons isolated either from E17 to E18 rat embryos or from P1 to P2 rat pups and monitored [ATP]c simultaneously with mitochondrial membrane potential (ΔΨm; TMRM) and NAD(P)H autofluorescence. In embryonic neurons, transient glucose deprivation induced a near-complete decrease in [ATP]c, which was partially reversible and was accelerated by inhibition of glycolysis with 2-deoxyglucose. In the absence of glucose, pyruvate did not cause any significant increase in [ATP]c in 84% of embryonic neurons, and inhibition of mitochondrial ATP synthase with oligomycin failed to decrease [ATP]c. Moreover, ΔΨm was significantly reduced by oligomycin, indicating that mitochondria acted as consumers rather than producers of ATP in embryonic neurons. In sharp contrast, in postnatal neurons pyruvate added during glucose deprivation significantly increased [ATP]c (by 54 ± 8%), whereas oligomycin induced a sharp decline in [ATP]c and increased ΔΨm. These signs of oxidative phosphorylation were observed in all tested P1-P2 neurons. Measurement of ΔΨm with the potential-sensitive probe JC-1 revealed that neuronal mitochondrial membrane potential was significantly reduced in embryonic cultures compared to the postnatal ones, possibly due to increased proton permeability of inner mitochondrial membrane. We conclude that, in embryonic, but not postnatal neuronal cultures, ATP synthesis is predominantly glycolytic and the oxidative phosphorylation-mediated synthesis of ATP by mitochondrial F1Fo-ATPase is insignificant.

8.
Ann N Y Acad Sci ; 1171: 521-9, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19723099

RESUMEN

Glutamate excitotoxicity is an important contributor to neuronal loss. Glutamate-induced Ca(2+) deregulation and accompanying mitochondrial depolarization are closely associated with the onset of apoptotic and necrotic neuronal death. We investigated the role in these phenomena of 2-oxoglutarate dehydrogenase (OGDH), the enzyme participating in mitochondrial degradation of glutamate. To achieve this goal, we used specific effectors of cellular OGDH, succinyl phosphonate and its phosphonoethyl ether. Preincubation of cerebellar granule neurons with these phosphono analogues of 2-oxoglutarate was shown to protect the cells from glutamate-induced Ca(2+) deregulation and irreversible mitochondrial depolarization, followed simultaneously by fluorescence of fura-2FF and rhodamine 123, respectively. The protection was characterized by delay in onset and decreased propagation of Ca(2+) deregulation and by reversibility of the associated mitochondrial depolarization. Compared to its phosphonoethyl ether, succinyl phosphonate exhibited both higher affinity to OGDH in vitro and better protection from Ca(2+) deregulation in situ, supporting the assumption that neuroprotection by phosphonates involves their interaction with cellular OGDH. Preincubation of cerebellar granule neurons with succinyl phosphonate decreased neuronal death after excitotoxic action of glutamate. Thus, specific inhibitors of OGDH alleviate glutamate-induced calcium deregulation, mitochondrial depolarization, and neuronal death.


Asunto(s)
Apoptosis/efectos de los fármacos , Glutamatos/toxicidad , Neuronas/efectos de los fármacos , Organofosfonatos/farmacología , Succinatos/farmacología , Animales , Calcio/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/patología , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Relación Dosis-Respuesta a Droga , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Microscopía Fluorescente , Neuronas/metabolismo , Neuronas/patología , Organofosfonatos/química , Ratas , Ratas Wistar , Succinatos/química
9.
Biochem Pharmacol ; 77(9): 1531-40, 2009 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-19426691

RESUMEN

Impairment of the 2-oxoglutarate oxidative decarboxylation by the 2-oxoglutarate dehydrogenase complex (OGDHC) is associated with the glutamate accumulation, ROS production and neuropathologies. We hypothesized that correct function of OGDHC under metabolic stress is essential to overcome the glutamate excitotoxic action on neurons. We show that synthetic phosphono analogs of 2-oxoglutarate, succinyl phosphonate and its phosphono ethyl ester, improve the catalysis by brain OGDHC through inhibiting the side reaction of irreversible inactivation of its first component, 2-oxoglutarate dehydrogenase. Under the substrate and cofactor saturation, the component and complex undergo the inactivation during catalysis with the apparent rate constant 0.2 min(-1). The inactivation rate is reduced by 90% and 60% in the presence of 50 microM succinyl phosphonate and its phosphono ethyl ester, correspondingly. In cultured cerebellar granule neurons exposed to excitotoxic glutamate, the phosphonates (100 microM) protect from the irreversible impairment of mitochondrial function and delayed calcium deregulation. The deregulation amplitude is decreased by succinyl phosphonate and its phosphono ethyl ester by 50% and 30%, correspondingly. Thus, succinyl phosphonate is more potent than its phosphono ethyl ester in protecting both the isolated brain OGDHC from inactivation and cultured neurons from the glutamate-induced calcium deregulation. The correlation of the relative efficiency of the phosphonates in vitro and in situ indicates that their cellular effects are due to targeting OGDHC, which is in accord with independent studies. We conclude that the compounds preserving the 2-oxoglutarate dehydrogenase activity are of neuroprotective value upon metabolic disbalance induced by glutamate excess.


Asunto(s)
Cerebelo/efectos de los fármacos , Ácido Glutámico/toxicidad , Complejo Cetoglutarato Deshidrogenasa/antagonistas & inhibidores , Ácidos Cetoglutáricos/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Organofosfonatos/farmacología , Animales , Calcio/metabolismo , Células Cultivadas , Cerebelo/citología , Cerebelo/enzimología , Cerebelo/metabolismo , Relación Dosis-Respuesta a Droga , Ácido Glutámico/metabolismo , Ácidos Cetoglutáricos/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Neuronas/enzimología , Neuronas/metabolismo , Fármacos Neuroprotectores/química , Organofosfonatos/química , Oxidación-Reducción , Ratas , Ratas Wistar , Factores de Tiempo
10.
BMC Pharmacol ; 8: 1, 2008 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-18215309

RESUMEN

BACKGROUND: Accumulated evidence suggests that insulin resistance and impairments in cerebral insulin receptor signaling may contribute to age-related cognitive deficits and Alzheimer's disease. The enhancement of insulin receptor signaling is, therefore, a promising strategy for the treatment of age-related cognitive disorders. The mitochondrial respiratory chain, being involved in insulin-stimulated H2O2 production, has been identified recently as a potential target for the enhancement of insulin signaling. The aim of the present study is to examine: (1) whether a specific respiratory substrate, dicholine salt of succinic acid (CS), can enhance insulin-stimulated insulin receptor autophosphorylation in neurons, and (2) whether CS can ameliorate cognitive deficits of various origins in animal models. RESULTS: In a primary culture of cerebellar granule neurons, CS significantly enhanced insulin-stimulated insulin receptor autophosphorylation. In animal models, CS significantly ameliorated cognitive deficits, when administered intraperitoneally for 7 days. In 16-month-old middle-aged C57Bl/6 mice (a model of normal aging), CS enhanced spatial learning in the Morris water maze, spontaneous locomotor activity, passive avoidance performance, and increased brain N-acetylaspartate/creatine levels, as compared to the age-matched control (saline). In rats with chronic cerebral hypoperfusion, CS enhanced spatial learning, passive avoidance performance, and increased brain N-acetylaspartate/creatine levels, as compared to control rats (saline). In rats with beta-amyloid peptide-(25-35)-induced amnesia, CS enhanced passive avoidance performance and increased activity of brain choline acetyltransferase, as compared to control rats (saline). In all used models, CS effects lasted beyond the seven-day treatment period and were found to be significant about two weeks following the treatment. CONCLUSION: The results of the present study suggest that dicholine salt of succinic acid, a novel neuronal insulin sensitizer, ameliorates cognitive deficits and neuronal dysfunctions in animal models relevant to age-related cognitive impairments, vascular dementia, and Alzheimer's disease.


Asunto(s)
Envejecimiento/psicología , Amnesia/prevención & control , Péptidos beta-Amiloides/farmacología , Circulación Cerebrovascular/efectos de los fármacos , Colina/análogos & derivados , Trastornos del Conocimiento/prevención & control , Insulina/farmacología , Modelos Animales , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/farmacología , Ácidos Pipecólicos/farmacología , Ácido Succínico/farmacología , Amnesia/inducido químicamente , Animales , Colina/farmacología , Ratones , Ratones Endogámicos C57BL , Neuronas/metabolismo , Fosforilación , Receptor de Insulina/metabolismo
11.
Cell Calcium ; 43(6): 602-14, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18037484

RESUMEN

To clarify the role of the mitochondrial permeability transition pore (MPT) in the mechanism of the glutamate-induced delayed calcium deregulation (DCD) and mitochondrial depolarization (MD), we studied changes in cytosolic (pH(c)) and mitochondrial pH (pH(m)) induced by glutamate in cultured cortical neurons expressing pH-sensitive fluorescent proteins. We found that DCD and MD were associated with a prominent pH(m) decrease which presumably resulted from MPT opening. This pH(m) decrease occurred with some delay after the onset of DCD and MD. This argued against the hypothesis that MPT opening plays a dominant role in triggering of DCD. This conclusion was also supported by experiments in which Ca(2+) was replaced with antagonist of MPT opening Sr(2+). We found that in Sr(2+)-containing medium glutamate-induced delayed strontium deregulation (DSD), similar to DCD, which was accompanied by a profound MD. Analysis of the changes in pH(c) and pH(m) associated with DSD led us to conclude that MD in Sr(2+)-containing medium occurred without involvement of the pore. In contrast, in Ca(2+)-containing medium such "non-pore mechanism" was responsible only for MD initiation while in the final stages of MD development the MPT played a major role.


Asunto(s)
Señalización del Calcio/fisiología , Corteza Cerebral/metabolismo , Ácido Glutámico/metabolismo , Mitocondrias/metabolismo , Neuronas/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo , Animales , Animales Recién Nacidos , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/ultraestructura , Colorantes Fluorescentes , Ácido Glutámico/farmacología , Concentración de Iones de Hidrógeno/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/fisiología , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Ratas , Ratas Wistar , Estroncio/farmacología , Factores de Tiempo , Canales Aniónicos Dependientes del Voltaje/efectos de los fármacos
13.
BMC Neurosci ; 8: 84, 2007 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-17919343

RESUMEN

BACKGROUND: Accumulated evidence suggests that hydrogen peroxide (H2O2) generated in cells during insulin stimulation plays an integral role in insulin receptor signal transduction. The role of insulin-induced H2O2 in neuronal insulin receptor activation and the origin of insulin-induced H2O2 in neurons remain unclear. The aim of the present study is to test the following hypotheses (1) whether insulin-induced H2O2 is required for insulin receptor autophosphorylation in neurons, and (2) whether mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in insulin receptor autophosphorylation in neurons. RESULTS: Insulin stimulation elicited rapid insulin receptor autophosphorylation accompanied by an increase in H2O2 release from cultured cerebellar granule neurons (CGN). N-acetylcysteine (NAC), a H2O2 scavenger, inhibited both insulin-stimulated H2O2 release and insulin-stimulated autophosphorylation of insulin receptor. Inhibitors of respiratory chain-mediated H2O2 production, malonate and carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), inhibited both insulin-stimulated H2O2 release from neurons and insulin-stimulated autophosphorylation of insulin receptor. Dicholine salt of succinic acid, a respiratory substrate, significantly enhanced the effect of suboptimal insulin concentration on the insulin receptor autophosphorylation in CGN. CONCLUSION: Results of the present study suggest that insulin-induced H2O2 is required for the enhancement of insulin receptor autophosphorylation in neurons. The mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in the insulin receptor autophosphorylation in neurons.


Asunto(s)
Transporte de Electrón/fisiología , Peróxido de Hidrógeno/metabolismo , Insulina/farmacología , Neuronas/metabolismo , Receptor de Insulina/metabolismo , Animales , Respiración de la Célula/fisiología , Células Cultivadas , Insulina/metabolismo , Insulina/fisiología , Mitocondrias/metabolismo , Neuronas/fisiología , Fosforilación , Ratas , Ratas Wistar
14.
BMC Biotechnol ; 7: 37, 2007 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-17603870

RESUMEN

BACKGROUND: Genetically encoded sensors developed on the basis of green fluorescent protein (GFP)-like proteins are becoming more and more popular instruments for monitoring cellular analytes and enzyme activities in living cells and transgenic organisms. In particular, a number of Ca2+ sensors have been developed, either based on FRET (Fluorescence Resonance Energy Transfer) changes between two GFP-mutants or on the change in fluorescence intensity of a single circularly permuted fluorescent protein (cpFP). RESULTS: Here we report significant progress on the development of the latter type of Ca2+ sensors. Derived from the knowledge of previously reported cpFP-based sensors, we generated a set of cpFP-based indicators with different spectral properties and fluorescent responses to changes in Ca2+ concentration. Two variants, named Case12 and Case16, were characterized by particular high brightness and superior dynamic range, up to 12-fold and 16.5-fold increase in green fluorescence between Ca2+-free and Ca2+-saturated forms. We demonstrated the high potential of these sensors on various examples, including monitoring of Ca2+ response to a prolonged glutamate treatment in cortical neurons. CONCLUSION: We believe that expanded dynamic range, high brightness and relatively high pH-stability should make Case12 and Case16 popular research tools both in scientific studies and high throughput screening assays.


Asunto(s)
Calcio/metabolismo , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Espectrometría de Fluorescencia/métodos , Animales , Proteínas Fluorescentes Verdes/genética , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida , Células PC12 , Ratas , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
Brain Res ; 995(1): 145-9, 2004 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-14644480

RESUMEN

In our study, we examined middle cerebral artery (MCA) contractile responses in two animal models. After hemorrhagic disturbances in rats of Krushinsky-Molodkina strain (KMRs) a decrease in contractile responses to serotonin (5-HT) was observed. During incomplete global cerebral ischemia, MCAs had increased responsiveness to endothelin-1 (ET-1), but reduced responsiveness to serotonin. These findings suggest that cerebral circulation disorders alter cerebrovascular function possibly leading to secondary disturbances in brain circulation.


Asunto(s)
Isquemia Encefálica/complicaciones , Isquemia Encefálica/fisiopatología , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/fisiopatología , Circulación Cerebrovascular/fisiología , Arteria Cerebral Media/fisiopatología , Vasoconstricción/fisiología , Animales , Isquemia Encefálica/patología , Hemorragia Cerebral/patología , Circulación Cerebrovascular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Endotelina-1/metabolismo , Endotelina-1/farmacología , Femenino , Masculino , Arteria Cerebral Media/efectos de los fármacos , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/fisiología , Ratas , Ratas Wistar , Serotonina/metabolismo , Serotonina/farmacología , Vasoconstricción/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...