RESUMEN
INTRODUCTION: Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to ß-amyloid (Aß) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. METHODS: We employed heparin-affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to enrich HBPs from plasma obtained from AD (n = 62) and control (n = 47) samples. These profiles were then correlated to Aß, tau and phosphorylated tau (pTau) CSF biomarkers and plasma pTau181 from the same individuals, as well as a consensus brain proteome network to assess the overlap with AD brain pathophysiology. RESULTS: Heparin enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundant proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude in abundance, were measured across 109 samples. Compared to the consensus AD brain protein co-expression network, we observed that specific plasma proteins exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes, highlighting the complex interplay between the two compartments. Elevated proteins in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate with Aß deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and the APOE4 proteoform. Additionally, heparin-enriched proteins in plasma demonstrated significant correlations with conventional AD CSF biomarkers, including Aß, total tau, pTau, and plasma pTau181. A panel of five plasma proteins classified AD from control individuals with an area under the curve (AUC) of 0.85. When combined with plasma pTau181, the panel significantly improved the classification performance of pTau181 alone, increasing the AUC from 0.93 to 0.98. This suggests that the heparin-enriched plasma proteome captures additional variance in cognitive dementia beyond what is explained by pTau181. CONCLUSION: These findings support the utility of a heparin-affinity approach coupled with TMT-MS for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.
Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Heparina , Proteoma , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/metabolismo , Humanos , Proteoma/metabolismo , Anciano , Masculino , Femenino , Heparina/metabolismo , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/sangre , Proteómica/métodos , Anciano de 80 o más Años , Proteínas tau/metabolismo , Proteínas Sanguíneas/metabolismo , Proteínas Sanguíneas/análisis , Persona de Mediana EdadRESUMEN
INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked Black Americans (BA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in Alzheimer's Disease (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from BA (n = 306), LA (n = 326), or BA and LA (n = 4) brain donors plus non-Hispanic White (n = 252) and other (n = 20) ethnic groups, to establish a foundational dataset enriched for BA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: The inclusion of traditionally underrepresented groups in multi-omics studies is essential to discovering the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD. HIGHLIGHTS: Accelerating Medicines Partnership in Alzheimer's Disease Diversity Initiative led brain tissue profiling in multi-ethnic populations. Brain multi-omics data is generated from Black American, Latin American, and non-Hispanic White donors. RNA, whole genome sequencing and tandem mass tag proteomicsis completed and shared. Multiple brain regions including caudate, temporal and dorsolateral prefrontal cortex were profiled.
Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/etnología , Negro o Afroamericano/genética , Encéfalo/metabolismo , Encéfalo/patología , Etnicidad/genética , Hispánicos o Latinos/genética , Multiómica , Transcriptoma , Blanco/genéticaRESUMEN
Alzheimer's disease (AD) is currently defined by the aggregation of amyloid-ß (Aß) and tau proteins in the brain. Although biofluid biomarkers are available to measure Aß and tau pathology, few markers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here, we characterized the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals using two different proteomic technologies-tandem mass tag mass spectrometry and SomaScan. Integration of both data types allowed for generation of a robust protein coexpression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen-associated protein kinase signaling, neddylation, and mitochondrial biology and overlapped with a previously described lipoprotein module in serum. Alterations of all three modules in blood were associated with dementia more than 20 years before diagnosis. Analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Clustering of individuals based on their CSF proteomic profiles revealed heterogeneity of pathological changes not fully reflected by Aß and tau.
Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Clorhidrato de Atomoxetina , Proteómica , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Proteómica/métodos , Apolipoproteína E4/genética , Clorhidrato de Atomoxetina/uso terapéutico , Clorhidrato de Atomoxetina/farmacología , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/metabolismo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Péptidos beta-Amiloides/metabolismo , Masculino , Anciano , Femenino , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/metabolismoRESUMEN
Introduction: Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, yet our comprehension predominantly relies on studies within the non-Hispanic White (NHW) population. Here we aimed to provide comprehensive insights into the proteomic landscape of AD across diverse racial and ethnic groups. Methods: Dorsolateral prefrontal cortex (DLPFC) and superior temporal gyrus (STG) brain tissues were donated from multiple centers (Mayo Clinic, Emory University, Rush University, Mt. Sinai School of Medicine) and were harmonized through neuropathological evaluation, specifically adhering to the Braak staging and CERAD criteria. Among 1105 DLPFC tissue samples (998 unique individuals), 333 were from African American donors, 223 from Latino Americans, 529 from NHW donors, and the rest were from a mixed or unknown racial background. Among 280 STG tissue samples (244 unique individuals), 86 were African American, 76 Latino American, 116 NHW and the rest were mixed or unknown ethnicity. All tissues were uniformly homogenized and analyzed by tandem mass tag mass spectrometry (TMT-MS). Results: As a Quality control (QC) measure, proteins with more than 50% missing values were removed and iterative principal component analysis was conducted to remove outliers within brain regions. After QC, 9,180 and 9,734 proteins remained in the DLPC and STG proteome, respectively, of which approximately 9,000 proteins were shared between regions. Protein levels of microtubule-associated protein tau (MAPT) and amyloid-precursor protein (APP) demonstrated AD-related elevations in DLPFC tissues with a strong association with CERAD and Braak across racial groups. APOE4 protein levels in brain were highly concordant with APOE genotype of the individuals. Discussion: This comprehensive region resolved large-scale proteomic dataset provides a resource for the understanding of ethnoracial-specific protein differences in AD brain.
RESUMEN
Relapsed or refractory diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL) patients still faced with poor survival, representing an unmet clinical need. In-depth research into the disease's pathogenesis and the development of targeted treatment strategies are urgently needed. Here, we conducted a comprehensive bioinformatic analysis of gene mutation and expression using data from our center and public databases. Cell cycle-related genes especially for CDKN2A/B-CDK4/6/CCND1 machinery altered frequently in DLBCL and MCL. Clinically, high CDK4 and CDK6 expression were correlated with poor prognosis of DLBCL and MCL patients. Furthermore, we also validated the pharmacological efficacy of CDK4/6 inhibitor palbociclib and its synergy effect with PI3K inhibitor idelalisib utilizing in vitro cell lines and in vivo cell-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models. Our results provided sufficient pre-clinical evidence to support the potential combination of palbociclib and idelalisib for DLBCL and MCL patients.
Asunto(s)
Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina , Sinergismo Farmacológico , Piperazinas , Purinas , Piridinas , Quinazolinonas , Ensayos Antitumor por Modelo de Xenoinjerto , Humanos , Purinas/farmacología , Animales , Piperazinas/farmacología , Piridinas/farmacología , Quinazolinonas/farmacología , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/metabolismo , Ratones , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 4 Dependiente de la Ciclina/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas/genética , Linfoma de Células del Manto/tratamiento farmacológico , Linfoma de Células del Manto/patología , Linfoma de Células del Manto/genética , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Linfoma de Células B Grandes Difuso/genética , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proliferación Celular/efectos de los fármacos , Femenino , Inhibidores de Proteínas Quinasas/farmacologíaRESUMEN
INTRODUCTION: Cerebrovascular dysfunction is a pathological hallmark of Alzheimer's disease (AD). Nevertheless, detecting cerebrovascular changes within bulk tissues has limited our ability to characterize proteomic alterations from less abundant cell types. METHODS: We conducted quantitative proteomics on bulk brain tissues and isolated cerebrovasculature from the same individuals, encompassing control (N = 28), progressive supranuclear palsy (PSP) (N = 18), and AD (N = 21) cases. RESULTS: Protein co-expression network analysis identified unique cerebrovascular modules significantly correlated with amyloid plaques, cerebrovascular amyloid angiopathy (CAA), and/or tau pathology. The protein products within AD genetic risk loci were concentrated within cerebrovascular modules. The overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with cerebrovascular network highlighted a significant increase of matrisome proteins, SMOC1 and SMOC2, in CSF, plasma, and brain. DISCUSSION: These findings enhance our understanding of cerebrovascular deficits in AD, shedding light on potential biomarkers associated with CAA and vascular dysfunction in neurodegenerative diseases.
Asunto(s)
Enfermedad de Alzheimer , Biomarcadores , Proteómica , Humanos , Biomarcadores/líquido cefalorraquídeo , Biomarcadores/sangre , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/sangre , Enfermedad de Alzheimer/genética , Masculino , Anciano , Femenino , Encéfalo/metabolismo , Tauopatías/líquido cefalorraquídeo , Tauopatías/sangre , Parálisis Supranuclear Progresiva/líquido cefalorraquídeo , Parálisis Supranuclear Progresiva/sangre , Angiopatía Amiloide Cerebral/líquido cefalorraquídeo , Angiopatía Amiloide Cerebral/genética , Persona de Mediana Edad , Anciano de 80 o más Años , Proteínas tau/líquido cefalorraquídeoRESUMEN
INTRODUCTION: Multi-omics studies in Alzheimer's disease (AD) revealed many potential disease pathways and therapeutic targets. Despite their promise of precision medicine, these studies lacked African Americans (AA) and Latin Americans (LA), who are disproportionately affected by AD. METHODS: To bridge this gap, Accelerating Medicines Partnership in AD (AMP-AD) expanded brain multi-omics profiling to multi-ethnic donors. RESULTS: We generated multi-omics data and curated and harmonized phenotypic data from AA (n=306), LA (n=326), or AA and LA (n=4) brain donors plus Non-Hispanic White (n=252) and other (n=20) ethnic groups, to establish a foundational dataset enriched for AA and LA participants. This study describes the data available to the research community, including transcriptome from three brain regions, whole genome sequence, and proteome measures. DISCUSSION: Inclusion of traditionally underrepresented groups in multi-omics studies is essential to discover the full spectrum of precision medicine targets that will be pertinent to all populations affected with AD.
RESUMEN
Introduction: Heparin binding proteins (HBPs) with roles in extracellular matrix assembly are strongly correlated to ß-amyloid (Aß) and tau pathology in Alzheimer's disease (AD) brain and cerebrospinal fluid (CSF). However, it remains challenging to detect these proteins in plasma using standard mass spectrometry-based proteomic approaches. Methods: We employed heparin affinity chromatography, followed by off-line fractionation and tandem mass tag mass spectrometry (TMT-MS), to capture and enrich HBPs in plasma obtained from AD (n=62) and control (n=47) samples. These profiles were then correlated to a consensus AD brain proteome, as well as with Aß, tau and phosphorylated tau (pTau) CSF biomarkers from the same individuals. We then leveraged published human postmortem brain proteome datasets to assess the overlap with the heparin-enriched plasma proteome. Results: Heparin-enrichment from plasma was highly reproducible, enriched well-known HBPs like APOE and thrombin, and depleted high-abundance proteins such as albumin. A total of 2865 proteins, spanning 10 orders of magnitude were detectable. Utilizing a consensus AD brain protein co-expression network, we observed that specific plasma HBPs exhibited consistent direction of change in both brain and plasma, whereas others displayed divergent changes highlighting the complex interplay between the two compartments. Elevated HBPs in AD plasma, when compared to controls, included members of the matrisome module in brain that accumulate within Aß deposits, such as SMOC1, SMOC2, SPON1, MDK, OLFML3, FRZB, GPNMB, and APOE. Additionally, heparin enriched plasma proteins demonstrated significant correlations with conventional AD CSF biomarkers, including Aß, total tau, pTau, and plasma pTau from the same individuals. Conclusion: These findings support the utility of a heparin-affinity approach for enriching amyloid-associated proteins, as well as a wide spectrum of plasma biomarkers that reflect pathological changes in the AD brain.
RESUMEN
The genetic predisposition to lymphoma is not fully understood. We identified 13 lymphoma-cancer families (2011-2021), in which 27 individuals developed lymphomas and 26 individuals had cancers. Notably, male is the predominant gender in lymphoma patients, whereas female is the predominant gender in cancer patients (p = .019; OR = 4.72, 95% CI, 1.30-14.33). We collected samples from 18 lymphoma patients, and detected germline variants through exome sequencing. We found that germline protein truncating variants (PTVs) were enriched in DNA repair and immune genes. Totally, we identified 31 heterozygous germline mutations (including 12 PTVs) of 25 DNA repair genes and 19 heterozygous germline variants (including 7 PTVs) of 14 immune genes. PTVs of ATM and PNKP were found in two families, respectively. We performed whole genome sequencing of diffuse large B cell lymphomas (DLBCLs), translocations at IGH locus and activation of oncogenes (BCL6 and MYC) were verified, and homologous recombination deficiency was detected. In DLBCLs with germline PTVs of ATM, deletion and insertion in CD58 were further revealed. Thus, in lymphoma-cancer families, we identified germline defects of both DNA repair and immune genes in lymphoma patients.
Asunto(s)
Reparación del ADN , Predisposición Genética a la Enfermedad , Mutación de Línea Germinal , Linfoma de Células B Grandes Difuso , Humanos , Masculino , Femenino , Reparación del ADN/genética , Persona de Mediana Edad , Adulto , Linfoma de Células B Grandes Difuso/genética , Anciano , Linfoma/genética , Secuenciación del Exoma , Adulto Joven , Linaje , Proteínas de la Ataxia Telangiectasia Mutada/genética , AdolescenteRESUMEN
BACKGROUND: Classical Hodgkin lymphoma (cHL) is a highly curable disease, while novel therapy is needed for refractory or relapsed (R/R) patients. This phase II trial aimed to evaluate the role of camrelizumab plus gemcitabine and oxaliplatin (GEMOX) in R/R cHL patients. METHODS: Transplant-eligible patients with R/R cHL were enrolled and received two 14-day cycles of camrelizumab 200 mg intravenously (IV) and two 28-day cycles of camrelizumab 200 mg IV, gemcitabine 1000 mg/m2 IV, and oxaliplatin 100 mg/m2 IV on days 1 and 15. Patients with partial response (PR) or stable disease received an additional cycle of combination therapy. Those who achieved complete response (CR) or PR proceeded to autologous stem cell transplantation (ASCT). The primary endpoint was the CR rate at the end of protocol therapy before ASCT. RESULTS: Forty-two patients were enrolled. At the end of protocol therapy, the objective response rate and CR rate were 94.9% (37/39) and 69.2% (27/39) in the evaluable set, and 88.1% (37/42) and 64.3% (27/42) in the full analysis set, respectively. Twenty-nine patients (69.0%) proceeded to ASCT, and 4 of 5 patients with PR achieved CR after ASCT. After a median follow-up of 20.7 months, the 12-month progression-free survival rate was 96.6% and the 12-month overall survival rate was 100%. Grade 3 or higher treatment emergent adverse events occurred in 28.6% of patients (12/42), mainly hematological toxicity. CONCLUSIONS: Camrelizumab combined with GEMOX constitutes an effective salvage therapy for R/R cHL, proving to be relatively well-tolerated and facilitating ASCT in most patients, thus promoting sustained remission. TRIAL REGISTRATION: ClinicalTrials.gov NCT04239170. Registered on January 1, 2020.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Trasplante de Células Madre Hematopoyéticas , Enfermedad de Hodgkin , Humanos , Enfermedad de Hodgkin/tratamiento farmacológico , Enfermedad de Hodgkin/etiología , Enfermedad de Hodgkin/patología , Gemcitabina , Oxaliplatino/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Trasplante Autólogo , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Resultado del TratamientoRESUMEN
Dysfunction of the neurovascular unit stands as a significant pathological hallmark of Alzheimer's disease (AD) and age-related neurodegenerative diseases. Nevertheless, detecting vascular changes in the brain within bulk tissues has proven challenging, limiting our ability to characterize proteomic alterations from less abundant cell types. To address this challenge, we conducted quantitative proteomic analyses on both bulk brain tissues and cerebrovascular-enriched fractions from the same individuals, encompassing cognitively unimpaired control, progressive supranuclear palsy (PSP), and AD cases. Protein co-expression network analysis identified modules unique to the cerebrovascular fractions, specifically enriched with pericytes, endothelial cells, and smooth muscle cells. Many of these modules also exhibited significant correlations with amyloid plaques, cerebral amyloid angiopathy (CAA), and/or tau pathology in the brain. Notably, the protein products within AD genetic risk loci were found concentrated within modules unique to the vascular fractions, consistent with a role of cerebrovascular deficits in the etiology of AD. To prioritize peripheral AD biomarkers associated with vascular dysfunction, we assessed the overlap between differentially abundant proteins in AD cerebrospinal fluid (CSF) and plasma with a vascular-enriched network modules in the brain. This analysis highlighted matrisome proteins, SMOC1 and SMOC2, as being increased in CSF, plasma, and brain. Immunohistochemical analysis revealed SMOC1 deposition in both parenchymal plaques and CAA in the AD brain, whereas SMOC2 was predominantly localized to CAA. Collectively, these findings significantly enhance our understanding of the involvement of cerebrovascular abnormalities in AD, shedding light on potential biomarkers and molecular pathways associated with CAA and vascular dysfunction in neurodegenerative diseases.
RESUMEN
Functional loss of TDP-43, an RNA binding protein genetically and pathologically linked to amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), leads to the inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote the degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. Here, we show that mRNA transcripts harboring cryptic exons generated de novo proteins in TDP-43-depleted human iPSC-derived neurons in vitro, and de novo peptides were found in cerebrospinal fluid (CSF) samples from patients with ALS or FTD. Using coordinated transcriptomic and proteomic studies of TDP-43-depleted human iPSC-derived neurons, we identified 65 peptides that mapped to 12 cryptic exons. Cryptic exons identified in TDP-43-depleted human iPSC-derived neurons were predictive of cryptic exons expressed in postmortem brain tissue from patients with TDP-43 proteinopathy. These cryptic exons produced transcript variants that generated de novo proteins. We found that the inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Last, we showed that 18 de novo peptides across 13 genes were present in CSF samples from patients with ALS/FTD spectrum disorders. The demonstration of cryptic exon translation suggests new mechanisms for ALS/FTD pathophysiology downstream of TDP-43 dysfunction and may provide a potential strategy to assay TDP-43 function in patient CSF.
Asunto(s)
Esclerosis Amiotrófica Lateral , Demencia Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Demencia Frontotemporal/genética , Péptidos , ProteómicaRESUMEN
Background: Follicular lymphoma (FL) is characterized by an incurable course that frequently necessitates multiple lines of treatment. While a range of new approaches have broadened therapeutic options for patients in later lines, data regarding treatment patterns and outcomes of Chinese patients with relapsed/refractory(R/R) FL was scarcely reported. Methods: This retrospective single-center study included patients diagnosed with FL grades 1-3a at our institution between January 2002 and December 2019. Endpoints of interest were analyzed according to lines and types of interventions. The endpoints mainly included overall response rate (ORR), progression-free survival (PFS), and overall survival (OS). Results: The study enrolled 566 biopsy-proven patients. Among them, 544 patients initiated the first line of treatment, followed by 240 initiating the second line, 146 initiating the third line, 88 initiating the fourth line, 47 initiating the fifth line, and 28 initiating the sixth line. In terms of treatment patterns, anti-CD20 chemotherapy was a major modality in the first and second lines. However, for patients in the third line and subsequent lines, treatment approaches were diverse, and participation in clinical trials for new medications was common, which correlated with a survival benefit. The study also revealed that clinical indicators (such as ORR, PFS, and OS) gradually decreased with each subsequent line of treatment. The ORR at the first line was 86.6%, but decreased to 48.6% at the third line and 40.4% at the sixth line, respectively. Similarly, median OS and PFS decreased to 88.8 and 7.1 months at the third line and further reduced to 21.7 and 2.8 months at the sixth line, respectively. A total of 133 patients developed progression within 24 months from the initiation of first line anti-CD20 chemotherapy (POD24), and these patients exhibited poorer response rates and outcomes in subsequent lines of therapycompared to the non-POD24 group. Conclusion: This study revealed the clinical routine practices and prognosis of R/R FL patients within the Chinese population. It underscored the unmet need for optimal strategies to improve survival and also served as a benchmark for future trials.
RESUMEN
Alzheimer's disease (AD) is currently defined at the research level by the aggregation of amyloid-ß (Aß) and tau proteins in brain. While biofluid biomarkers are available to measure Aß and tau pathology, few biomarkers are available to measure the complex pathophysiology that is associated with these two cardinal neuropathologies. Here we describe the proteomic landscape of cerebrospinal fluid (CSF) changes associated with Aß and tau pathology in 300 individuals as assessed by two different proteomic technologies-tandem mass tag (TMT) mass spectrometry and SomaScan. Harmonization and integration of both data types allowed for generation of a robust protein co-expression network consisting of 34 modules derived from 5242 protein measurements, including disease-relevant modules associated with autophagy, ubiquitination, endocytosis, and glycolysis. Three modules strongly associated with the apolipoprotein E ε4 (APOE ε4) AD risk genotype mapped to oxidant detoxification, mitogen associated protein kinase (MAPK) signaling, neddylation, and mitochondrial biology, and overlapped with a previously described lipoprotein module in serum. Neddylation and oxidant detoxification/MAPK signaling modules had a negative association with APOE ε4 whereas the mitochondrion module had a positive association with APOE ε4. The directions of association were consistent between CSF and blood in two independent longitudinal cohorts, and altered levels of all three modules in blood were associated with dementia over 20 years prior to diagnosis. Dual-proteomic platform analysis of CSF samples from an AD phase 2 clinical trial of atomoxetine (ATX) demonstrated that abnormal elevations in the glycolysis CSF module-the network module most strongly correlated to cognitive function-were reduced by ATX treatment. Individuals who had more severe glycolytic changes at baseline responded better to ATX. Clustering of individuals based on their CSF proteomic network profiles revealed ten groups that did not cleanly stratify by Aß and tau status, underscoring the heterogeneity of pathological changes not fully reflected by Aß and tau. AD biofluid proteomics holds promise for the development of biomarkers that reflect diverse pathologies for use in clinical trials and precision medicine.
RESUMEN
Alzheimer's disease (AD) pathology develops many years before the onset of cognitive symptoms. Two pathological processes-aggregation of the amyloid-ß (Aß) peptide into plaques and the microtubule protein tau into neurofibrillary tangles (NFTs)-are hallmarks of the disease. However, other pathological brain processes are thought to be key disease mediators of Aß plaque and NFT pathology. How these additional pathologies evolve over the course of the disease is currently unknown. Here we show that proteomic measurements in autosomal dominant AD cerebrospinal fluid (CSF) linked to brain protein coexpression can be used to characterize the evolution of AD pathology over a timescale spanning six decades. SMOC1 and SPON1 proteins associated with Aß plaques were elevated in AD CSF nearly 30 years before the onset of symptoms, followed by changes in synaptic proteins, metabolic proteins, axonal proteins, inflammatory proteins and finally decreases in neurosecretory proteins. The proteome discriminated mutation carriers from noncarriers before symptom onset as well or better than Aß and tau measures. Our results highlight the multifaceted landscape of AD pathophysiology and its temporal evolution. Such knowledge will be critical for developing precision therapeutic interventions and biomarkers for AD beyond those associated with Aß and tau.
Asunto(s)
Enfermedad de Alzheimer , Proteómica , Humanos , Enfermedad de Alzheimer/líquido cefalorraquídeo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Biomarcadores/metabolismo , Masculino , Femenino , Adulto , Persona de Mediana Edad , Mutación , Edad de InicioRESUMEN
BACKGROUND: Despite being twice as likely to get Alzheimer's disease (AD), African Americans have been grossly underrepresented in AD research. While emerging evidence indicates that African Americans with AD have lower cerebrospinal fluid (CSF) levels of Tau compared to Caucasians, other differences in AD CSF biomarkers have not been fully elucidated. Here, we performed unbiased proteomic profiling of CSF from African Americans and Caucasians with and without AD to identify both common and divergent AD CSF biomarkers. METHODS: Multiplex tandem mass tag-based mass spectrometry (TMT-MS) quantified 1,840 proteins from 105 control and 98 AD patients of which 100 identified as Caucasian while 103 identified as African American. We used differential protein expression and co-expression approaches to assess how changes in the CSF proteome are related to race and AD. Co-expression network analysis organized the CSF proteome into 14 modules associated with brain cell-types and biological pathways. A targeted mass spectrometry method, selected reaction monitoring (SRM), with heavy labeled internal standards was used to measure a panel of CSF module proteins across a subset of African Americans and Caucasians with or without AD. A receiver operating characteristic (ROC) curve analysis assessed the performance of each protein biomarker in differentiating controls and AD by race. RESULTS: Consistent with previous findings, the increase of Tau levels in AD was greater in Caucasians than in African Americans by both immunoassay and TMT-MS measurements. CSF modules which included 14-3-3 proteins (YWHAZ and YWHAG) demonstrated equivalent disease-related elevations in both African Americans and Caucasians with AD, whereas other modules demonstrated more profound disease changes within race. Modules enriched with proteins involved with glycolysis and neuronal/cytoskeletal proteins, including Tau, were more increased in Caucasians than in African Americans with AD. In contrast, a module enriched with synaptic proteins including VGF, SCG2, and NPTX2 was significantly lower in African Americans than Caucasians with AD. Following SRM and ROC analysis, VGF, SCG2, and NPTX2 were significantly better at classifying African Americans than Caucasians with AD. CONCLUSIONS: Our findings provide insight into additional protein biomarkers and pathways reflecting underlying brain pathology that are shared or differ by race.
Asunto(s)
Enfermedad de Alzheimer , Proteoma , Humanos , Proteínas 14-3-3 , Enfermedad de Alzheimer/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , Negro o Afroamericano , Fragmentos de Péptidos/líquido cefalorraquídeo , Proteómica , Espectrometría de Masas en Tándem , Proteínas tau/líquido cefalorraquídeo , Blanco , Líquido Cefalorraquídeo/químicaRESUMEN
Alzheimer's disease (AD) is the most common form of dementia, with cerebrospinal fluid (CSF) ß-amyloid (Aß), total Tau, and phosphorylated Tau (pTau) providing the most sensitive and specific biomarkers for diagnosis. However, these diagnostic biomarkers do not reflect the complex changes in AD brain beyond amyloid (A) and Tau (T) pathologies. Here, we report a selected reaction monitoring mass spectrometry (SRM-MS) method with isotopically labeled standards for relative protein quantification in CSF. Biomarker positive (AT+) and negative (AT-) CSF pools were used as quality controls (QCs) to assess assay precision. We detected 62 peptides (51 proteins) with an average coefficient of variation (CV) of ~13% across 30 QCs and 133 controls (cognitively normal, AT-), 127 asymptomatic (cognitively normal, AT+) and 130 symptomatic AD (cognitively impaired, AT+). Proteins that could distinguish AT+ from AT- individuals included SMOC1, GDA, 14-3-3 proteins, and those involved in glycolysis. Proteins that could distinguish cognitive impairment were mainly neuronal proteins (VGF, NPTX2, NPTXR, and SCG2). This demonstrates the utility of SRM-MS to quantify CSF protein biomarkers across stages of AD.
Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Bioensayo , Biomarcadores , Proteínas del Líquido Cefalorraquídeo , Espectrometría de MasasRESUMEN
Introduction: The treatment for relapsed/refractory peripheral T-cell lymphoma (r/r PTCL) is suboptimal. This open-label, multicenter, single-arm study aimed to investigate the antitumor activity and safety of camrelizumab (a PD-1 blockade) plus apatinib (an antiangiogenic agent) for patients with r/r PTCL. Methods: Eligible patients with r/r PTCL were enrolled and received camrelizumab 200 mg intravenously every 2 weeks and apatinib 500 or 250 mg orally once daily, 4 weeks as a cycle. The primary endpoint was overall response rate (ORR). Results: A total of 20 patients were enrolled and received study medications in the study, with a median number of prior treatment line of 3 (range 1-6). At the cutoff date of March 4, 2022, the median follow-up was 27.2 months (range: 0.5-39.9), and three patients remained on treatment. Six patients had early discontinuation without tumor response evaluation. For all patients, the ORR was 30% (6/20) (95% confidence interval [CI], 11.9% to 54.3%), with two patients (10%) achieving complete response. The median progression-free survival (PFS) and median overall survival for all patients were 5.6 months (95% CI, 1.8 to not reached) and 16.7 months (95% CI, 2.8 to not reached), respectively. Patients with PD-L1 expression ≥50% (3 patients) had a numerically higher ORR and longer median PFS than those with PD-L1 expression < 50% (5 patients). The most commonly reported grade 3 or higher adverse events were hyperlipidemia (15%), hypokalemia (15%) and anemia (15%). No treatment-related deaths occurred. Discussion: In this study, PD-1 inhibitors plus low-dose antiangiogenic drugs presented preliminary antitumor activity and manageable toxicity in patients with r/r PTCL.
Asunto(s)
Anticuerpos Monoclonales Humanizados , Antineoplásicos , Linfoma de Células T Periférico , Inhibidores de Proteínas Quinasas , Humanos , Antígeno B7-H1 , Linfoma de Células T Periférico/tratamiento farmacológico , Linfoma de Células T Periférico/patología , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/patología , Anticuerpos Monoclonales Humanizados/uso terapéutico , Inhibidores de Proteínas Quinasas/uso terapéutico , Antineoplásicos/uso terapéuticoRESUMEN
BACKGROUND: The difference between clinical characteristics and outcomes between follicular lymphoma grade 1-2 (FL1-2) and FL3a defined pathologically remains unclear, resulting in uncertainty how to treat FL3a. However, it may be crucial for clinicians to discriminate grade 3a and grade 1-2 for predicting prognosis and thus making treatment decisions. METHODS: We compared 1403 patients with FL1-2 and 765 patients with FL3a diagnosed between January 2000 and December 2020 from fifteen centers nationwide in China to describe differences in clinical characteristics and outcomes. RESULTS: Compared with FL1-2 patients, FL3a subgroup had a higher percentage of elderly patients (P = 0.003), and relatively more FL3a patients presented with increased levels of LDH (P < 0.0001) and higher Ki-67 indexs greater than 30% (P < 0.001). More FL3a patients were treated with CHOP ± R (P < 0.0001), and fewer were treated with the watchful-waiting approach (P < 0.0001). The results showed a higher incidence of relapse among FL3a patients, in which more patients underwent histological transformation (HT) when compared to FL1-2 (P = 0.003). 1470 (76.2%) patients of the entire cohort received R-CHOP therapy; survival analysis revealed that FL3a patients had a worse progression-free survival (PFS) rate than FL1-2 patients. Survival of FL3a patients with respect to FLIPI showed an inferior PFS in the intermediate and high-risk groups than FL1-2 patients. FL3a patients had a much worse prognosis than FL1-2 with or without progression of disease within 24 months (POD24). FL3a patients had higher likelihood of lymphoma-related death (LRD, P < 0.05), whereas the rates for non-LRD were comparable. CONCLUSION: In conclusion, this study demonstrates a marked difference in clinical features and outcomes in FL3a patients compared with FL1-2 patients. The results highlight the need for applying therapeutic approaches distinct from FL1-2 when treating FL3a patients.
RESUMEN
Functional loss of TDP-43, an RNA-binding protein genetically and pathologically linked to ALS and FTD, leads to inclusion of cryptic exons in hundreds of transcripts during disease. Cryptic exons can promote degradation of affected transcripts, deleteriously altering cellular function through loss-of-function mechanisms. However, the possibility of de novo protein synthesis from cryptic exon transcripts has not been explored. Here, we show that mRNA transcripts harboring cryptic exons generate de novo proteins both in TDP-43 deficient cellular models and in disease. Using coordinated transcriptomic and proteomic studies of TDP-43 depleted iPSC-derived neurons, we identified numerous peptides that mapped to cryptic exons. Cryptic exons identified in iPSC models were highly predictive of cryptic exons expressed in brains of patients with TDP-43 proteinopathy, including cryptic transcripts that generated de novo proteins. We discovered that inclusion of cryptic peptide sequences in proteins altered their interactions with other proteins, thereby likely altering their function. Finally, we showed that these de novo peptides were present in CSF from patients with ALS. The demonstration of cryptic exon translation suggests new mechanisms for ALS pathophysiology downstream of TDP-43 dysfunction and may provide a strategy for novel biomarker development.