Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(14)2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37514670

RESUMEN

In this paper, a microwave monolithic integrated circuit (MMIC) high-power amplifier (HPA) for Ku-band active radar applications based on gallium nitride on silicon (GaN-on-Si) is presented. The design is based on a three-stage architecture and was implemented using the D01GH technology provided by OMMIC foundry. Details on the architecture definition and design process to maximize delivered power are provided along with stability and thermal analyses. To optimize the amplifier performance, an asymmetry was included at the output combiner. Experimental results show that the HPA achieves a 39.5 dBm pulsed-mode output power, a peak linear gain of 23 dB, a drain efficiency of 27%, and good input/output matching in the 16-19 GHz frequency range. The chip area is 5 × 3.5 mm2 and for the measurements was mounted on a custom-made module. These results demonstrate that GaN-on-Si-based Solid-State Power Amplifiers (SSPAs) can be used for the implementation of Ku-band active radars.

2.
Biology (Basel) ; 12(6)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37372067

RESUMEN

The widely used plasticizer bisphenol-A (BPA) is well-known for producing neurodegeneration and cognitive disorders, following acute and long-term exposure. Although some of the BPA actions involved in these effects have been unraveled, they are still incompletely known. Basal forebrain cholinergic neurons (BFCN) regulate memory and learning processes and their selective loss, as observed in Alzheimer's disease and other neurodegenerative diseases, leads to cognitive decline. In order to study the BPA neurotoxic effects on BFCN and the mechanisms through which they are induced, 60-day old Wistar rats were used, and a neuroblastoma cholinergic cell line from the basal forebrain (SN56) was used as a basal forebrain cholinergic neuron model. Acute treatment of rats with BPA (40 µg/kg) induced a more pronounced basal forebrain cholinergic neuronal loss. Exposure to BPA, following 1- or 14-days, produced postsynaptic-density-protein-95 (PSD95), synaptophysin, spinophilin, and N-methyl-D-aspartate-receptor-subunit-1 (NMDAR1) synaptic proteins downregulation, an increase in glutamate content through an increase in glutaminase activity, a downregulation in the vesicular-glutamate-transporter-2 (VGLUT2) and in the WNT/ß-Catenin pathway, and cell death in SN56 cells. These toxic effects observed in SN56 cells were mediated by overexpression of histone-deacetylase-2 (HDAC2). These results may help to explain the synaptic plasticity, cognitive dysfunction, and neurodegeneration induced by the plasticizer BPA, which could contribute to their prevention.

3.
Food Chem Toxicol ; 170: 113500, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36374790

RESUMEN

Bisphenol-A (BPA), a polymer component extensively used, produces memory and learning alterations after acute and long-term exposure. However, the mechanisms are not well known. Cortex and hippocampus neuronal networks control cognitive functions, which are innervated by basal forebrain cholinergic neurons (BFCN), and their neurodegeneration induces cognitive dysfunctions. Wild type or protein tyrosine phosphatase 1B (PTP1B), histone deacetylase 2 (HDAC2), tau or ß amyloid precursor protein (ßAPP) silenced SN56 cells treated with BPA (0.001 µM-100 µM) with or without N-acetylcysteine (NAC; 1 mM), following 1 and 14 days, were used, as a model of BFCN to determine the insulin pathway dysfunction, oxidative stress (OS) generation and amyloid-ß (Aß) and tau proteins accumulation involvement in the BCFN cell death induction, as a possible mechanism that could produce the cognitive disorders reported. BPA-induced BFCN cell death, after 24 h and 14 days of treatment, through insulin pathway dysfunction, OS generation, mediated by NRF2 pathway downregulation, and Aß and tau proteins accumulation, which were in turn induced by HDAC2 and PTP1B overexpression. This is relevant information to explain the BFCN neurodegeneration mechanisms that could trigger the neurodegeneration in the rest of the regions innerved by them, leading to cognitive disorders.


Asunto(s)
Insulinas , Proteínas tau , Proteínas tau/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Histona Desacetilasa 2/metabolismo , Monoéster Fosfórico Hidrolasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuronas Colinérgicas/metabolismo , Apoptosis , Colinérgicos/metabolismo , Insulinas/metabolismo
4.
Food Chem Toxicol ; 167: 113264, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35781037

RESUMEN

Brain's metals accumulation is associated with toxic proteins, like amyloid-proteins (Aß), formation, accumulation, and aggregation, leading to neurodegeneration. Metals downregulate the correct folding, disaggregation, or degradation mechanisms of toxic proteins, as heat shock proteins (HSPs) and proteasome. The 7-amino-phenanthridin-6(5H)-one derivatives (APH) showed neuroprotective effects against metal-induced cell death through their antioxidant effect, independently of their chelating activity. However, additional neuroprotective mechanisms seem to be involved. We tested the most promising APH compounds (APH1-5, 10-100 µM) chemical ability to prevent metal-induced Aß proteins aggregation; the APH1-5 effect on HSP70 and proteasome 20S (P20S) expression, the metals effect on Aß formation and the involvement of HSP70 and P20S in the process, and the APH1-5 neuroprotective effects against Aß proteins (1 µM) and metals in SN56 cells. Our results show that APH1-5 compounds chemically avoid metal-induced Aß proteins aggregation and induce HSP70 and P20S expression. Additionally, iron and cadmium induced Aß proteins formation through downregulation of HSP70 and P20S. Finally, APH1-5 compounds protected against Aß proteins-induced neuronal cell death, reversing partially or completely this effect. These data may help to provide a new therapeutic approach against the neurotoxic effect induced by metals and other environmental pollutants, especially when mediated by toxic proteins.


Asunto(s)
Enfermedad de Alzheimer , Fármacos Neuroprotectores , Péptidos beta-Amiloides/metabolismo , Proteínas Amiloidogénicas , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Metales , Fármacos Neuroprotectores/farmacología , Complejo de la Endopetidasa Proteasomal/metabolismo
5.
Eur J Med Chem ; 210: 113061, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33310289

RESUMEN

Matrix metalloproteinases (MMPs) are zinc-dependent hydrolytic enzymes of great biological relevance, and some of them are key to the neuroinflammatory events and the brain damage associated to stroke. Non-zinc binding ligands are an emerging trend in drug discovery programs in this area due to their lower tendency to show off-target effects. 7-Amino-phenanthridin-6-one is disclosed as a new framework able to inhibit matrix metalloproteinases by binding to the distal part of the enzyme S1' site, as shown by computational studies. A kinetic study revealed inhibition to be noncompetitive. Some of the compounds showed some degree of selectivity for the MMP-2 and MMP-9 enzymes, which are crucial for brain damage associated to ischemic stroke. Furthermore, some compounds also had a high neuroprotective activity against oxidative stress, which is also very relevant aspect of ischaemic stroke pathogenesis, both decreasing lipid peroxidation and protecting against the oxidative stress-induced reduction in cell viability. One of the compounds, bearing a 2-thienyl substituent at C-9 and a 4-methoxyphenylamino at C-7, had the best-balanced multitarget profile and was selected as a lead on which to base future structural manipulation.


Asunto(s)
Descubrimiento de Drogas , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Inhibidores de la Metaloproteinasa de la Matriz/síntesis química , Inhibidores de la Metaloproteinasa de la Matriz/química , Ratones , Estructura Molecular , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/química , Relación Estructura-Actividad , Células Tumorales Cultivadas
6.
Sensors (Basel) ; 20(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781757

RESUMEN

This paper presents a procedure to analyse the effects of radiation in an IEEE 802.15.4 RF receiver for wireless sensor networks (WSNs). Specifically, single-event transients (SETs) represent one of the greatest threats to the adequate performance of electronic communication devices in high-radiation environments. The proposed procedure consists in injecting current pulses in sensitive nodes of the receiver and analysing how they propagate through the different circuits that form the receiver. In order to perform this analysis, a Complementary Metal Oxide Semiconductor (CMOS) low-IF receiver has been designed using a 0.18 µm technology from the foundry UMC. In order to analyse the effect of single-event transients in this receiver, it has been studied how current pulses generated in the low-noise amplifier propagate down the receiver chain. The effect of the different circuits that form the receiver on this kind of pulse has been studied prior to the analysis of the complete receiver. First, the effect of SETs in low-noise amplifiers was analysed. Then, the propagation of pulses through mixers was studied. The effect of filters in the analysed current pulses has also been studied. Regarding the analysis of the designed RF receiver, an amplitude and phase shift was observed under the presence of SETs.

7.
Food Chem Toxicol ; 144: 111611, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32738378

RESUMEN

Paraquat (PQ) produces hippocampal neuronal cell death and cognitive dysfunctions after unique and continued exposure, but the mechanisms are not understood. Primary hippocampal wildtype or ßAPP-Tau silenced cells were co-treated with PQ with or without E2, N-acetylcysteine (NAC), NS-398 (cyclooxygenase-2 inhibitor), MF63 (PGES-1 inhibitor) and/or recombinant brain-derived neurotrophic factor (BDNF) during one- and fourteen-days to studied PQ effect on prostaglandin E2 (PGE2) and BDNF signaling and their involvement in hyperphosphorylated Tau (pTau) and amyloid-beta (Aß) protein formation, and oxidative stress generation, that lead to neuronal cell loss through estrogenic disruption, as a possible mechanism of cognitive dysfunctions produced by PQ. Our results indicate that PQ overexpressed cyclooxygenase-2 that leads to an increase of PGE2 and alters the expression of EP1-3 receptor subtypes. PQ induced also a decrease of proBDNF and mature BDNF levels and altered P75NTR and tropomyosin receptor kinase B (TrkB) expression. PQ induced PGE2 and BDNF signaling dysfunction, mediated through estrogenic disruption, leading to Aß and pTau proteins synthesis, oxidative stress generation and finally to cell death. Our research provides relevant information to explain PQ hippocampal neurotoxic effects, indicating a probable explanation of the cognitive dysfunction observed and suggests new therapeutic strategies to protect against PQ toxic effects.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Muerte Celular/efectos de los fármacos , Dinoprostona/metabolismo , Estrógenos/metabolismo , Herbicidas/farmacología , Hipocampo/efectos de los fármacos , Neuronas/efectos de los fármacos , Paraquat/farmacología , Transducción de Señal , Animales , Células Cultivadas , Femenino , Hipocampo/citología , Hipocampo/metabolismo , Neuronas/metabolismo , Estrés Oxidativo/efectos de los fármacos , Embarazo , Ratas , Ratas Wistar
8.
Ecotoxicol Environ Saf ; 203: 110975, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32678756

RESUMEN

Manganese (Mn) produces cholinergic neuronal loss in basal forebrain (BF) region that was related to cognitive dysfunction induced after single and repeated Mn treatment. All processes that generate cholinergic neuronal loss in BF remain to be understood. Mn exposure may produce the reduction of BF cholinergic neurons by increasing amyloid beta (Aß) and phosphorylated Tau (pTau) protein levels, altering heat shock proteins' (HSPs) expression, disrupting proteasome P20S activity and generating oxidative stress. These mechanisms, described to be altered by Mn in regions different than BF, could lead to the memory and learning process alteration produced after Mn exposure. The research performed shows that single and repeated Mn treatment of SN56 cholinergic neurons from BF induces P20S inhibition, increases Aß and pTau protein levels, produces HSP90 and HSP70 proteins expression alteration, and oxidative stress generation, being the last two effects mediated by NRF2 pathway alteration. The increment of Aß and pTau protein levels was mediated by HSPs and proteasome dysfunction. All these mechanisms mediated the cell decline observed after Mn treatment. Our results are relevant because they may assist to reveal the processes leading to the neurotoxicity and cognitive alterations observed after Mn exposure.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Prosencéfalo Basal/efectos de los fármacos , Neuronas Colinérgicas/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/metabolismo , Manganeso/toxicidad , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas tau/metabolismo , Animales , Prosencéfalo Basal/metabolismo , Prosencéfalo Basal/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/metabolismo , Manganeso/metabolismo , Ratones , Estrés Oxidativo/efectos de los fármacos
9.
Nat Commun ; 11(1): 1423, 2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184408

RESUMEN

Conventional approaches to probing ultrafast molecular dynamics rely on the use of synchronized laser pulses with a well-defined time delay. Typically, a pump pulse excites a molecular wavepacket. A subsequent probe pulse can then dissociate or ionize the molecule, and measurement of the molecular fragments provides information about where the wavepacket was for each time delay. Here, we propose to exploit the ultrafast nuclear-position-dependent emission obtained due to large light-matter coupling in plasmonic nanocavities to image wavepacket dynamics using only a single pump pulse. We show that the time-resolved emission from the cavity provides information about when the wavepacket passes a given region in nuclear configuration space. This approach can image both cavity-modified dynamics on polaritonic (hybrid light-matter) potentials in the strong light-matter coupling regime and bare-molecule dynamics in the intermediate coupling regime of large Purcell enhancements, and provides a route towards ultrafast molecular spectroscopy with plasmonic nanocavities.

10.
Nat Nanotechnol ; 15(3): 198-202, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32015506

RESUMEN

Gauge fields in condensed matter physics give rise to nonreciprocal and topological transport phenomena and exotic electronic states1. Nanomechanical systems are applied as sensors and in signal processing, and feature strong nonlinearities. Gauge potentials acting on such systems could induce quantum Hall physics for phonons at the nanoscale. Here, we demonstrate a magnetic gauge field for nanomechanical vibrations in a scalable, on-chip optomechanical system. We induce the gauge field through multi-mode optomechanical interactions, which have been proposed as a resource for the necessary breaking of time-reversal symmetry2-4. In a dynamically modulated nanophotonic system, we observe how radiation pressure forces mediate phonon transport between resonators of different frequencies. The resulting controllable interaction, which is characterized by a high rate and nonreciprocal phase, mimics the Aharonov-Bohm effect5. We show that the introduced scheme does not require high-quality cavities, such that it allows exploring topological acoustic phases in many-mode systems resilient to realistic disorder.

11.
Food Chem Toxicol ; 125: 583-594, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30738988

RESUMEN

Manganese (Mn) induces cognitive disorders and basal forebrain (BF) cholinergic neuronal loss, involved on learning and memory regulation, which could be the cause of such cognitive disorders. However, the mechanisms through which it induces these effects are unknown. We hypothesized that Mn could induce BF cholinergic neuronal loss through oxidative stress generation, cholinergic transmission and AChE variants alteration that could explain Mn cognitive disorders. This study shows that Mn impaired cholinergic transmission in SN56 cholinergic neurons from BF through alteration of AChE and ChAT activity and CHT expression. Moreover, Mn induces, after acute and long-term exposure, AChE variants alteration and oxidative stress generation that leaded to lipid peroxidation and protein oxidation. Finally, Mn induces cell death on SN56 cholinergic neurons and this effect is independent of cholinergic transmission alteration, but was mediated partially by oxidative stress generation and AChE variants alteration. Our results provide new understanding of the mechanisms contributing to the harmful effects of Mn on cholinergic neurons and their possible involvement in cognitive disorders induced by Mn.


Asunto(s)
Acetilcolinesterasa/metabolismo , Prosencéfalo Basal/efectos de los fármacos , Neuronas Colinérgicas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Manganeso/toxicidad , Animales , Apoptosis/efectos de los fármacos , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Ratones , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos
12.
Food Chem Toxicol ; 121: 297-308, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30213552

RESUMEN

Cadmium, a neurotoxic environmental compound, produces cognitive disorders, although the mechanism remains unknown. Cadmium induces a more pronounced cell death on cholinergic neurons from basal forebrain (BF), mediated, in part, by increase in Aß and total and phosphorylated Tau protein levels, which may explain cadmium effects on learning and memory processes. Cadmium downregulates the expression of heat shock proteins (HSPs) HSP 90, HSP70 and HSP27, and of HSF1, the master regulator of the HSP pathway. HSPs proteins reduce the production of Aß and phosphorylated Tau proteins and avoid cell death pathways induction. Thus, we hypothesized that cadmium induced the production of Aß and Tau proteins by HSP pathway disruption through HSF1 expression alteration, leading to BF cholinergic neurons cell death. Our results show that cadmium downregulates HSF1, leading to HSP90, HSP70 and HSP27 gene expression downregulation in BF SN56 cholinergic neurons. In addition, cadmium induced Aß and total and phosphorylated Tau proteins generation, mediated partially by HSP90, HSP70 and HSP27 disruption, leading to cell death. These results provide new understanding of the mechanisms contributing to cadmium harmful effects on cholinergic neurons.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Cadmio/toxicidad , Muerte Celular/efectos de los fármacos , Neuronas Colinérgicas/efectos de los fármacos , Proteínas de Choque Térmico/metabolismo , Proteínas tau/metabolismo , Animales , Caspasa 3/genética , Caspasa 3/metabolismo , Caspasa 7/genética , Caspasa 7/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neuronas Colinérgicas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Compuestos de Fósforo , Reacción en Cadena en Tiempo Real de la Polimerasa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...