Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Elife ; 122024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38319073

RESUMEN

ß-Carotene oxygenase 1 (BCO1) catalyzes the cleavage of ß-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary ß-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that ß-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of ß-carotene on atherosclerosis resolution. To explore the direct implication of dietary ß-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that ß-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of ß-carotene on atherosclerosis resolution. Our data highlight the potential of ß-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.


Asunto(s)
Aterosclerosis , beta Caroteno , Ratones , Humanos , Animales , beta Caroteno/farmacología , beta Caroteno/metabolismo , Vitamina A/metabolismo , Hígado/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Lípidos
2.
J Lipid Res ; 65(3): 100507, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38272355

RESUMEN

Finasteride is commonly prescribed to treat benign prostate hyperplasia and male-pattern baldness in cis men and, more recently, trans individuals. However, the effect of finasteride on cardiovascular disease remains elusive. We evaluated the role of finasteride on atherosclerosis using low-density lipoprotein (LDL) receptor-deficient (Ldlr-/-) mice. Next, we examined the relevance to humans by analyzing the data deposited between 2009 and 2016 in the National Health and Nutrition Examination Survey. We show that finasteride reduces total plasma cholesterol and delays the development of atherosclerosis in Ldlr-/- mice. Finasteride reduced monocytosis, monocyte recruitment to the lesion, macrophage lesion content, and necrotic core area, the latter of which is an indicator of plaque vulnerability in humans. RNA sequencing analysis revealed a downregulation of inflammatory pathways and an upregulation of bile acid metabolism, oxidative phosphorylation, and cholesterol pathways in the liver of mice taking finasteride. Men reporting the use of finasteride showed lower plasma levels of cholesterol and LDL-cholesterol than those not taking the drug. Our data unveil finasteride as a potential treatment to delay cardiovascular disease in people by improving the plasma lipid profile.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Masculino , Animales , Ratones , Finasterida/farmacología , Finasterida/uso terapéutico , Encuestas Nutricionales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Colesterol/metabolismo , Receptores de LDL/genética , Ratones Noqueados
3.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-36945561

RESUMEN

ß-carotene oxygenase 1 (BCO1) catalyzes the cleavage of ß-carotene to form vitamin A. Besides its role in vision, vitamin A regulates the expression of genes involved in lipid metabolism and immune cell differentiation. BCO1 activity is associated with the reduction of plasma cholesterol in humans and mice, while dietary ß-carotene reduces hepatic lipid secretion and delays atherosclerosis progression in various experimental models. Here we show that ß-carotene also accelerates atherosclerosis resolution in two independent murine models, independently of changes in body weight gain or plasma lipid profile. Experiments in Bco1-/- mice implicate vitamin A production in the effects of ß-carotene on atherosclerosis resolution. To explore the direct implication of dietary ß-carotene on regulatory T cells (Tregs) differentiation, we utilized anti-CD25 monoclonal antibody infusions. Our data show that ß-carotene favors Treg expansion in the plaque, and that the partial inhibition of Tregs mitigates the effect of ß-carotene on atherosclerosis resolution. Our data highlight the potential of ß-carotene and BCO1 activity in the resolution of atherosclerotic cardiovascular disease.

4.
Artículo en Inglés | MEDLINE | ID: mdl-36754230

RESUMEN

Retinoic acid possesses potent immunomodulatory properties in various cell types, including macrophages. In this study, we first investigated the effects at the transcriptional and functional levels of exogenous retinoic acid in murine bone marrow-derived macrophages (BMDMs) in the presence or absence of interleukin 4 (IL4), a cytokine with potent anti-inflammatory properties. We examined the effect of IL4 on vitamin A homeostasis in macrophages by quantifying retinoid synthesis and secretion. Our RNAseq data show that exogenous retinoic acid synergizes with IL4 to regulate anti-inflammatory pathways such as oxidative phosphorylation and phagocytosis. Efferocytosis and lysosomal degradation assays validated gene expression changes at the functional level. IL4 treatment altered the expression of several genes involved in vitamin A transport and conversion to retinoic acid. Radiolabeling experiments and mass spectrometry assays revealed that IL4 stimulates retinoic acid production and secretion in a signal transducer and activator of transcription 6 (STAT6)-dependent manner. In summary, our studies highlight the key role of exogenous and endogenous retinoic acid in shaping the anti-inflammatory response of macrophages.


Asunto(s)
Interleucina-4 , Tretinoina , Ratones , Animales , Tretinoina/farmacología , Interleucina-4/metabolismo , Vitamina A , Activación de Macrófagos , Antiinflamatorios
5.
J Lipid Res ; 61(11): 1491-1503, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32963037

RESUMEN

Atherosclerosis is characterized by the pathological accumulation of cholesterol-laden macrophages in the arterial wall. Atherosclerosis is also the main underlying cause of CVDs, and its development is largely driven by elevated plasma cholesterol. Strong epidemiological data find an inverse association between plasma ß-carotene with atherosclerosis, and we recently showed that ß-carotene oxygenase 1 (BCO1) activity, responsible for ß-carotene cleavage to vitamin A, is associated with reduced plasma cholesterol in humans and mice. In this study, we explore whether intact ß-carotene or vitamin A affects atherosclerosis progression in the atheroprone LDLR-deficient mice. Compared with control-fed Ldlr-/- mice, ß-carotene-supplemented mice showed reduced atherosclerotic lesion size at the level of the aortic root and reduced plasma cholesterol levels. These changes were absent in Ldlr-/- /Bco1-/- mice despite accumulating ß-carotene in plasma and atherosclerotic lesions. We discarded the implication of myeloid BCO1 in the development of atherosclerosis by performing bone marrow transplant experiments. Lipid production assays found that retinoic acid, the active form of vitamin A, reduced the secretion of newly synthetized triglyceride and cholesteryl ester in cell culture and mice. Overall, our findings provide insights into the role of BCO1 activity and vitamin A in atherosclerosis progression through the regulation of hepatic lipid metabolism.


Asunto(s)
Aterosclerosis/metabolismo , Lípidos/química , Hígado/química , Vitamina A/metabolismo , beta Caroteno/metabolismo , Animales , Aterosclerosis/patología , Células Cultivadas , Femenino , Metabolismo de los Lípidos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores de LDL/deficiencia , Receptores de LDL/metabolismo , beta-Caroteno 15,15'-Monooxigenasa/deficiencia , beta-Caroteno 15,15'-Monooxigenasa/metabolismo
6.
Nutrients ; 11(4)2019 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-31013923

RESUMEN

Over the past decades, obesity has become a rising health problem as the accessibility to high calorie, low nutritional value food has increased. Research shows that some bioactive components in fruits and vegetables, such as carotenoids, could contribute to the prevention and treatment of obesity. Some of these carotenoids are responsible for vitamin A production, a hormone-like vitamin with pleiotropic effects in mammals. Among these effects, vitamin A is a potent regulator of adipose tissue development, and is therefore important for obesity. This review focuses on the role of the provitamin A carotenoid ß-carotene in human health, emphasizing the mechanisms by which this compound and its derivatives regulate adipocyte biology. It also discusses the physiological relevance of carotenoid accumulation, the implication of the carotenoid-cleaving enzymes, and the technical difficulties and considerations researchers must take when working with these bioactive molecules. Thanks to the broad spectrum of functions carotenoids have in modern nutrition and health, it is necessary to understand their benefits regarding to metabolic diseases such as obesity in order to evaluate their applicability to the medical and pharmaceutical fields.


Asunto(s)
Obesidad/tratamiento farmacológico , beta Caroteno/uso terapéutico , Adipocitos/efectos de los fármacos , Adipocitos/fisiología , Animales , Dieta , Humanos , beta-Caroteno 15,15'-Monooxigenasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...