RESUMEN
This study evaluated the impact of the encapsulation of sea buckthorn and grape pomace extracts in liposomal formulations on the retention and release of bioactive compounds and their antioxidant activity. The profile and composition of lipophilic extracts of sea buckthorn and hydrophilic extracts of grape pomace were analyzed. Encapsulation efficiency, retention rate, and the content of bioactive compounds encapsulated in liposomal formulations prepared in two media-water and ethanol-were evaluated. The encapsulation efficiency varied between 84 and 90%, indicating the superior encapsulation of the bioactive compounds. The retention rate varied between 79 and 86%, which indicated the stability of the liposome-encapsulated compounds over time. The antioxidant activity of the encapsulated samples was determined in vitro, under the conditions of gastric (pH 1.8) and intestinal (pH 8.2) digestion, in relation to the non-encapsulated extracts. The antioxidant activity of both liposomal formulations was higher than that of the nonencapsulated extracts during gastric digestion. Moreover, an increase over time in the antioxidant activity, expressed as % DPPH inhibition, was observed for all samples, with around 90% DPPH inhibition for non-encapsulated extracts and 92% for the encapsulated extracts, demonstrating the stability of bioactive compounds in acidic pH. Oppositely, when exposed to intestinal simulated digestion (alkaline pH), the antioxidant activity decreased over time to around 24% DPPH inhibition for both encapsulated and nonencapsulated extracts. These results provide a foundation for the further development and application of liposomal delivery systems in functional foods.
RESUMEN
Carotenoids, the natural pigments that confer the bright orange color of sea buckthorn berries, are also associated with several health benefits, such as antioxidant activity and skin and eye protection. Due to their lipophilic nature and localization, carotenoids are largely retained in the sea buckthorn pomace (SBP) resulting from juice production. Carotenoids from SBP (70.03 mg/100 g DW), extracted and characterized by HPLC-PDA, contained zeaxanthin (free and esterified) and beta-carotene as major compounds. The SBP carotenoids-enriched sunflower oil was further encapsulated in Ca-alginate hydrogel beads (98.4% encapsulation efficiency) using ionotropic gelation. The hydrogel beads were characterized by confocal laser scanning microscopy and scanning electron microscopy. Fairly good stability (>64%) of the encapsulated carotenoids in the alginate hydrogel beads during storage (30 days, 4 °C and 25 °C) was found, with zeaxanthin esters being the most stable compounds, for all the experimental conditions. The bioaccessibility of the total carotenoids (INFOGEST protocol) was 42.1 ± 4.6% from hydrated, and, respectively, 40.8 ± 4% from dehydrated SBP alginate hydrogel beads. The addition of yogurt to the dehydrated hydrogel beads had a positive effect on the bioaccessibility of free and esterified zeaxanthin, but not on that of the carotenes. In conclusion, SBP is a valuable source of carotenoids which can be protected by encapsulation in alginate hydrogel beads, thus still retaining a good bioaccessibility.
Asunto(s)
Alginatos , Disponibilidad Biológica , Carotenoides , Hippophae , Hidrogeles , Alginatos/química , Hippophae/química , Hidrogeles/química , Carotenoides/farmacocinética , Carotenoides/administración & dosificación , Carotenoides/análisis , Zeaxantinas/química , Yogur/análisis , Aceite de Girasol/química , Humanos , beta Caroteno/química , beta Caroteno/farmacocinética , beta Caroteno/administración & dosificación , Frutas/químicaRESUMEN
The present study aimed to investigate the chemical content of Romanian juneberries (Amelanchier lamarckii), their effect on antioxidant and enzyme inhibition activities, and their bioaccessibility after simulated in-vitro digestion. In Amelanchier lamarckii extract (AME), 16 polyphenolic compounds were identified by LC-ESI+-MS analysis. The most representative compounds found in the extract were cyanidin-galactoside, 3,4-dihydroxy-5-methoxybenzoic acid, feruloylquinic acid, and kaempferol, all belonging to the anthocyanins, phenolic acids, and flavonols subclasses. The polyphenols of AME exert quenching abilities of harmful reactive oxygen species, as the CUPRAC antioxidant assay value was 323.99 µmol Trolox/g fruit (FW), whereas the FRAP antioxidant value was 4.10 µmol Fe2+/g fruit (FW). Enzyme inhibition assays targeting tyrosinase (IC50 = 8.843 mg/mL), α-glucosidase (IC50 = 14.03 mg/mL), and acetylcholinesterase (IC50 = 49.55 mg/mL) were used for a screening of AME's inhibitory potential against these key enzymes as a common approach for the discovery of potential antidiabetic, skin pigmentation, and neurodegenerative effects. The screening for the potential antidiabetic effects due to the α-glucosidase inhibition was performed in glucose-induced disease conditions in a human retinal pigmented epithelial cell experimental model, proving that AME could have protective potential. In conclusion, AME is a valuable source of phenolic compounds with promising antioxidant potential and metabolic disease-protective effects, warranting further investigation for its use in the nutraceutical and health industries.
RESUMEN
The problem of food with functional ingredients, characterized by low energy intake and a variety of phytonutrients with biological activity, is one of the concerns of the population. The objectives of this study were to investigate the effect of pumpkin powder and its bioactive components on the quality, color and textural properties of shortbread cookies. In the drying process of pumpkin powder (Cucurbita moschata) at 60 ± 2 °C, the physicochemical parameters did not change significantly in relation to fresh pulp. The chromatic parameters L*, a* and b* showed that the pumpkin powder was brighter than the pulp, with a greater presence of yellow pigments. Pumpkin powder presented a rich source of bioactive compounds (polyphenols flavonoids, carotenoids) with an antioxidant potential of 161.52 mmol TE/100 g DW and 558.71 mg GAE/100 g DW. Antimicrobial activity against Gram-positive (Staphylococcus aureus, Bacillus cereus), Gram-negative (Escherichia coli, Salmonella Abony and Pseudomonas aeruginosa) bacteria and high antifungal activity against Candida albicans were attested. The sensory, physicochemical, texture parameters and color indicators of shortbread cookies with yellow pumpkin powder (YPP) added in a proportion of 5-20% were analyzed. The optimal score was given to the sample of 15% YPP. The use of 15-20% YPP contributed to improved consistency due to the formation of complexes between starch and protein.
RESUMEN
The Aries River (Western Romania) represents one of the most important affluents of the Mures River, with great significance in the Mures Tisza basin. The environmental quality of the Aries basin is significantly affected by both historic mining activities and contemporary impacts. Thus, an evaluation of the effects of the main contaminants found in water (organochlorine pesticides-OCPs, monocyclic aromatic hydrocarbons-MAHs, polycyclic aromatic hydrocarbons-PAHs, and metals) on cyanobacteria and plants was performed. Among OCPs, hexachlorocyclohexane isomers, dichlorodiphenyltrichloroethane, and derivatives were detected in plants while admissible concentrations were detected in water. Among MAHs, high levels of benzene were detected both in water and in plants. The levels of PAHs exceeded the allowable values in all samples. Increased concentrations of metals in water were found only at Baia de Aries, but in plants, all metal concentrations were high. The pH, nitrates, nitrites, and phosphates, as well as metals, pesticides, and aromatic hydrocarbons, influenced the physiological characteristics of algae, test plants, and aquatic plants exposed to various compounds dissolved in water. Considering that the Aries River basin is the site of intense past mining activities, these data provide information about the impact on water quality as a consequence of pollution events.
RESUMEN
The article investigates the process of pectin extraction using ultrasonic and microwave techniques from apple pomace generated during juice production in the context of circular bioeconomy. The extraction yield, equivalent mass, content of methoxyl groups, content of anhydrogalacturonic acid, and degree of esterification of pectin were investigated. These indicators varied depending on the parameters and extraction method. The resulting pectin displayed a co-extracted total polyphenol content (TPC) ranging from 2.16 to 13.05 mg GAE/g DW and a DPPH radical inhibition capacity of 4.32-18.86 µmol TE/g. It was found that the antioxidant activity of raw pectin is correlated with TPC and with the content of terminal groups released during the polysaccharide degradation process. The extracted pectin was used as a binding and coating agent for dried fruit bars. Evaluation of water activity (aw), TPC and total flavonoid content (TFC), together with sensory and microbiological analyses of the fruit bars over a period of 360 days, revealed a protective effect of pectin: reducing moisture loss, minimizing the degradation of bioactive compounds during storage, and maintaining the potential antioxidant activity of the product.
RESUMEN
In women, breast cancer is the most commonly diagnosed cancer (11.7% of total cases) and the leading cause of cancer death (6.9%) worldwide. Bioactive dietary components such as Sea buckthorn berries are known for their high carotenoid content, which has been shown to possess anti-cancer properties. Considering the limited number of studies investigating the bioactive properties of carotenoids in breast cancer, the aim of this study was to investigate the antiproliferative, antioxidant, and proapoptotic properties of saponified lipophilic Sea buckthorn berries extract (LSBE) in two breast cancer cell lines with different phenotypes: T47D (ER+, PR+, HER2-) and BT-549 (ER-, PR-, HER2-). The antiproliferative effects of LSBE were evaluated by an Alamar Blue assay, the extracellular antioxidant capacity was evaluated through DPPH, ABTS, and FRAP assays, the intracellular antioxidant capacity was evaluated through a DCFDA assay, and the apoptosis rate was assessed by flow cytometry. LSBE inhibited the proliferation of breast cancer cells in a concentration-dependent manner, with a mean IC50 of 16 µM. LSBE has proven to be a good antioxidant both at the intracellular level, due to its ability to significantly decrease the ROS levels in both cell lines (p = 0.0279 for T47D, and p = 0.0188 for BT-549), and at the extracellular level, where the ABTS and DPPH inhibition vried between 3.38-56.8%, respectively 5.68-68.65%, and 35.6 mg/L equivalent ascorbic acid/g LSBE were recorded. Based on the results from the antioxidant assays, LSBE was found to have good antioxidant activity due to its rich carotenoid content. The flow cytometry results revealed that LSBE treatment induced significant alterations in late-stage apoptotic cells represented by 80.29% of T47D cells (p = 0.0119), and 40.6% of BT-549 cells (p = 0.0137). Considering the antiproliferative, antioxidant, and proapoptotic properties of the carotenoids from LSBE on breast cancer cells, further studies should investigate whether these bioactive dietary compounds could be used as nutraceuticals in breast cancer therapy.
Asunto(s)
Hippophae , Neoplasias , Humanos , Antioxidantes/química , Carotenoides/química , Hippophae/química , Células MCF-7 , Frutas/química , Extractos Vegetales/químicaRESUMEN
Sunflower oil (Helianthus annuus) contains a rich concentration of polyunsaturated fatty acids, which are susceptible to rapid oxidative processes. The aim of this study was to evaluate the stabilizing effect of lipophilic extracts from two types of berries, sea buckthorn and rose hips, on sunflower oil. This research included the analysis of sunflower oil oxidation products and mechanisms, including the determination of chemical changes occurring in the lipid oxidation process via LC-MS/MS using electrospray ionization in negative and positive mode. Pentanal, hexanal, heptanal, octanal, and nonanal were identified as key compounds formed during oxidation. The individual profiles of the carotenoids from sea buckthorn berries were determined using RP-HPLC. The influence of the carotenoid extraction parameters ascertained from the berries on the oxidative stability of sunflower oil was analyzed. The dynamics of the accumulation of the primary and secondary products of lipid oxidation and the variation of the carotenoid pigment content in the lipophilic extracts of sea buckthorn and rose hips during storage demonstrated good stability at 4 °C in the absence of light for 12 months. The experimental results were applied to mathematical modeling using fuzzy sets and mutual information analysis, which allowed for the prediction of the oxidation of sunflower oil.
Asunto(s)
Frutas , Espectrometría de Masas en Tándem , Aceite de Girasol , Frutas/química , Cromatografía Liquida , Carotenoides/química , Ácido Ascórbico/análisis , Lípidos/análisis , Extractos Vegetales/química , Aceites de Plantas/químicaRESUMEN
The antimicrobial and antioxidant effects of plant extracts are well known, but their use is limited because they affect the physicochemical and sensory characteristics of products. Encapsulation presents an option to limit or prevent these changes. The paper presents the composition of individual polyphenols (HPLC-DAD-ESI-MS) from basil (Ocimum basilicum L.) extracts (BE), and their antioxidant activity and inhibitory effects against strains of Staphylococcus aureus, Geobacillus stearothermophilus, Bacillus cereus, Candida albicans, Enterococcus faecalis, Escherichia coli, and Salmonella Abony. The BE was encapsulated in sodium alginate (Alg) using the drop technique. The encapsulation efficiency of microencapsulated basil extract (MBE) was 78.59 ± 0.01%. SEM and FTIR analyses demonstrated the morphological aspect of the microcapsules and the existence of weak physical interactions between the components. Sensory, physicochemical and textural properties of MBE-fortified cream cheese were evaluated over a 28-day storage time at 4 °C. In the optimal concentration range of 0.6-0.9% (w/w) MBE, we determined the inhibition of the post-fermentation process and the improvement in the degree of water retention. This led to the improvement of the textural parameters of the cream cheese, contributing to the extension of the shelf life of the product by 7 days.
Asunto(s)
Antiinfecciosos , Queso , Ocimum basilicum , Queso/análisis , Antiinfecciosos/farmacología , Extractos Vegetales/farmacología , Extractos Vegetales/química , Ocimum basilicum/química , Antioxidantes/farmacología , Antioxidantes/químicaRESUMEN
The article investigated the antioxidant and antimicrobial activity of extracts from two aromatic plants-Satureja hortensis L. (SE) and Rosmarinus officinalis L. (RE), encapsulated in alginate, on-yogurt properties. The encapsulation efficiency was controlled by FTIR and SEM analysis. In both extracts, the individual polyphenol content was determined by HPLC-DAD-ESI-MS. The total polyphenol content and the antioxidant activity were spectrophotometrically quantified. The antimicrobial properties of SE and RE against gram-positive bacteria (Bacillus cereus, Enterococcus faecalis, Staphylococcus aureus, Geobacillus stearothermophilus), gram-negative bacteria (Escherichia coli, Acinetobacter baumannii, Salmonella abony) and yeasts (Candida albicans) were analyzed in vitro. The encapsulated extracts were used to prepare the functional concentrated yogurt. It was established that the addition of 0.30-0.45% microencapsulated plant extracts caused the inhibition of the post-fermentation process, the improvement of the textural parameters of the yogurt during storage, thus the shelf life of the yogurt increased by seven days, compared to the yogurt simple. Mutual information analysis was applied to establish the correlation between the concentration of the encapsulated extracts on the sensory, physical-chemical, and textural characteristics of the yogurt.
RESUMEN
BACKGROUND: Pumpkin seed and sunflower oil are rich in bioactive compounds, but are prone to oxidation during storage. Their fatty acids, carotenoid and volatile compounds and their Fourier-transform infrared (FTIR) profiles were studied during 8 months storage in order to assess the overall quality, but also to assess the impact of the oleogelation as conditioning process. RESULTS: The fatty acids methyl esters were analyzed by gas chromatography-mass spectrometry (GC-MS). The linoleic acid was the most abundant in the oils (604.6 g kg-1 in pumpkin and 690 g kg-1 in sunflower), but also in oleogels. Through high-performance liquid chromatography (HPLC), lutein and ß-carotene were determined as specific carotenoid compounds of the pumpkin seed oil and oleogel, in a total amount of 0.0072 g kg-1 . The volatile compounds profile revealed the presence of alpha-pinene for the pumpkin seed oil and oleogels and a tentative identification of limonene for the sunflower oil. Hexanal was also detected in the oleogels, indicating a thermal oxidation, which was further analyzed through infrared spectroscopy. CONCLUSIONS: During 8 months storage, the decrease of polyunsaturated fatty acid total amount was 5.72% for the pumpkin seed oil and 3.55% for the oleogel, while in the sunflower oil samples of 2.93% and 3.28% for the oleogel. It was concluded that oleogelation might protect specific carotenoid compounds, since the oleogels displayed higher content of ß-carotene at each storage time. Hexanal and heptanal were detected during storage, regardless of the oil or oleogel type. FTIR analysis depicts the differences in the constituent fatty acids resulting due to thermal oxidation or due to storage. © 2022 Society of Chemical Industry.
Asunto(s)
Cucurbita , Cucurbita/química , Ácidos Grasos/química , Carotenoides/análisis , Aceite de Girasol/análisis , beta Caroteno/análisis , Semillas/química , Aceites de Plantas/química , Aldehídos/análisisRESUMEN
Due to the confirmed therapeutic potential of resveratrol (Rv) for eye diseases, namely its powerful anti-angiogenic and antioxidant effects, this molecule must be studied more deeply. Nowadays, the pharmaceutic and pharmacokinetic available studies offer a troubling picture because of its low stability and bioavailability. To overcome this problem, researchers started to design and create different delivery systems that could improve the delivery amount of Rv. Therefore, this review aims to shed light on the proper and efficient techniques to isolate, purify and quantify the Rv molecule, and how this therapeutic molecule can be a part of a delivery system. The Rv great impact on aspects regarding its stability, bioavailability and absorption are also debated here, based on the existent literature on in vitro and in vivo human and animal studies. Moreover, after its absorption the Rv influence at the molecular level in ocular pathologies is described. In addition, the present review summarizes the available literature about Rv, hoping that Rv will gain more attention to investigate its unexplored side.
RESUMEN
(1) Background: Various studies on artemisinin and its derivatives have shown that Artemisia annua may be of therapeutic interest for different diseases, including chicken coccidiosis. This study aimed to evaluate the effects of Artemisia annua on farm-reared broiler chickens by analyzing both the anticoccidial efficacy and its effect on the intestinal microbiota of poultry. (2) Methods: The experiment was performed within three houses on a broiler chicken farm located in Romania. House 1 was the experimental group and received a diet with an addition of A. annua. Houses 2 and 4 were the control groups and received anticoccidials. The prophylactic efficacy of A. annua against coccidiosis was evaluated by recording the weight gain, feed conversion rate, number of oocysts per gram of feces, lesion score, and mortality rate. (3) Results: The chickens fed with A. annua showed a decreasing trend in the number of oocysts per gram of faeces, and their lesion score was 80% lower than in the control group. The weight gains of the chickens treated with A. annua was lower, whilst the feed conversion rate was better than in controls. (4) Conclusions: Artemisia annua showed promising results in the prophylaxis of coccidiosis. Overall, the broiler chickens that received A. annua presented promising zootechnical performances and medical data related to coccidiosis and gut microbiota.
RESUMEN
Diabetic retinopathy (DR) is a severe ocular complication that causes retinal damage, being one of the leading causes of blindness globally, thus the development of new strategies to prevent and treat DR as well as other degenerative diseases is highly desired. This work is focused on the design and fabrication of an ingenious model of polymeric microcapsules (MC) for controlled drug delivery in human retina cells able to carry therapeutic resveratrol (RSV) molecules in tandem with active anisotropic gold bipyramidal nanoparticles (AuBPs) as efficient photothermal agents. Specifically, MC were developed via a Layer-by-Layer deposition technique, by successively adding oppositely charged polyelectrolytes on a RSV-conjugated calcium carbonate (CaCO3) core. For the monitorization and localization of the as-formed spherical fluorescent MC inside human retina pigmented epithelial (RPE) D407 cells, fluorescein isothiocyanate, a Food and Drug Administration approved fluorophore, was attached between the polyelectrolytes layers. High-performance liquid chromatography analysis revealed a loading efficiency of over 90% of RSV on the CaCO3 core and demonstrates its release upon NIR irradiation as a consequence of the thermoplasmonic effect of MC. The cytotoxicity of the RSV-carrying MC inside human retina cells was assessed by WST-1 assay. Finally, cellular internalization and localization of the MC inside living RPE cells were monitored via Conventional Fluorescence and Re-Scanning Confocal Fluorescence Microscopy. This research seeks to take use of the novel MC and implement them as potential intraocular RSV delivery vehicles for the therapy of DR.
Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Humanos , Resveratrol/farmacología , Polielectrolitos , Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Polímeros , Cápsulas/químicaRESUMEN
Anthocyanins are water-soluble pigments present in fruits and vegetables, which render them an extensive range of colors. They have a wide distribution in the human diet, are innocuous, and, based on numerous studies, have supposed preventive and therapeutical benefits against chronic affections such as inflammatory, neurological, cardiovascular, digestive disorders, diabetes, and cancer, mostly due to their antioxidant action. Despite their great potential as pharmaceutical applications, they have a rather limited use because of their rather low stability to environmental variations. Their absorption was noticed to occur best in the stomach and small intestine, but the pH fluctuation of the digestive system impacts their rapid degradation. Urine excretion and tissue distribution also occur at low rates. The aim of this review is to highlight the chemical characteristics of anthocyanins and emphasize their weaknesses regarding bioavailability. It also targets to deliver an update on the recent advances in the involvement of anthocyanins in different pathologies with a focus on in vivo, in vitro, animal, and human clinical trials.
Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus , Animales , Antocianinas/metabolismo , Antocianinas/farmacología , Antocianinas/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Diabetes Mellitus/tratamiento farmacológico , Frutas/metabolismo , Fitoquímicos/farmacología , Fitoquímicos/uso terapéutico , Verduras/metabolismoRESUMEN
Carotenoids are isoprenoids widely distributed in foods that have been always part of the diet of humans. Unlike the other so-called food bioactives, some carotenoids can be converted into retinoids exhibiting vitamin A activity, which is essential for humans. Furthermore, they are much more versatile as they are relevant in foods not only as sources of vitamin A, but also as natural pigments, antioxidants, and health-promoting compounds. Lately, they are also attracting interest in the context of nutricosmetics, as they have been shown to provide cosmetic benefits when ingested in appropriate amounts. In this work, resulting from the collaborative work of participants of the COST Action European network to advance carotenoid research and applications in agro-food and health (EUROCAROTEN, www.eurocaroten.eu, https://www.cost.eu/actions/CA15136/#tabs|Name:overview) research on carotenoids in foods and feeds is thoroughly reviewed covering aspects such as analysis, carotenoid food sources, carotenoid databases, effect of processing and storage conditions, new trends in carotenoid extraction, daily intakes, use as human, and feed additives are addressed. Furthermore, classical and recent patents regarding the obtaining and formulation of carotenoids for several purposes are pinpointed and briefly discussed. Lastly, emerging research lines as well as research needs are highlighted.
Asunto(s)
Carotenoides , Alimentos , Antioxidantes , Carotenoides/análisis , Dieta , Humanos , Vitamina ARESUMEN
In this study we aimed to compare the mineralogical, thermal, physicochemical, and biological characteristics of recent organic carbon-rich sediments ('sapropels') from three geographically distant Romanian lakes (Tekirghiol and Amara, SE Romania, and Ursu, Central Romania) with distinct hydrogeochemical origins, presently used for pelotherapy. The investigated lakes were classified as inland brackish Na-Cl-sulfated type (Amara), coastal moderately saline and inland hypersaline Na-Cl types (Tekirghiol and Ursu, respectively). The settled organic matter is largely composed of photosynthetic pigments derived from autochthonous phytoplankton. Kerogen was identified in the sapropel of coastal Tekirghiol Lake suggesting its incipient maturation stage. The mineral composition was fairly similar in all sapropels and mainly consisted of quartz, calcite, and aragonite. Smectite, illite, mixed layer smectite/illite appeared as major clay components. Potentially toxic elements were found in low concentrations. The physical properties (i.e., specific heat, thermal conductivity and retentivity) and cation exchange capacity are comparable to other peloids used for therapy. This study is the first comprehensive multi-approached investigation of the geochemical nature of recent sapropels in Romanian saline lakes and thus contributes to expanding our knowledge on the origin and physicochemical qualities of organic matter-rich peloids with therapeutic uses.
RESUMEN
Recent trends in the food industry combined with novel methods in agriculture could transform rowan into a valuable raw material with potential technological applications. Thus, the aim of this research was to investigate the content of bioactive compounds in its fruits and to assess the color and antioxidant stability of the extracts prepared from such fruits during various thermal treatments and at different pH and ionic strength values. Various spectrophotometric methods, HPLC, and capillary electrophoresis were used to quantify the concentrations of bioactive compounds-polyphenols, carotenoids, organic acids, and to assess antioxidant activity and color. The results show that rowan berries contain circa 1.34-1.47 g/100 g of polyphenols among which include catechin, epicatechin, ferulic acid methyl ester, procyanidin B1, etc.; ca 21.65 mg/100 g of carotenoids including zeaxanthin, ß-cryptoxanthin, all-trans-ß-carotene, and various organic acids such as malic, citric, and succinic, which result in a high antioxidant activity of 5.8 mmol TE/100 g. Results also showed that antioxidant activity exhibited high stability when the extract was subjected to various thermal treatments, pHs, and ionic strengths, while color was mainly impacted negatively when a temperature of 100 °C was employed. This data confirms the technological potential of this traditional, yet often overlooked species.
Asunto(s)
Antioxidantes/química , Frutas/química , Pigmentos Biológicos/química , Extractos Vegetales/química , Sorbus/química , Concentración de Iones de Hidrógeno , Concentración Osmolar , Polifenoles/químicaRESUMEN
Anthocyanins (AN), natural compounds daily consumed by humans, have outstanding therapeutical potential if administered topically in melanoma pathology. However, the search for efficient therapy development is still in progress, owing to the lack of complete understanding of the AN intracellular path, once they are uptaken by the cells. This target is constrained by the need for an imaging strategy that would enable their intracellular detection and localization in-situ. In this light, diphenylboric acid 2-aminoethyl (DPBA), a non-fluorescent reagent, was here successfully used to form fluorescent complexes with AN. The AN used are the cyanidin aglycon as a free standard molecule (CY), and the glycosylated compounds, extracted and purified from chokeberry fruits (AE). In solution, it was observed that the fluorescence emission increased by 39% (CY@DPBA), and by 34% (AE@DPBA), which concludes that AN form fluorescent complexes with DPBA (CY@DPBA and AE@DPBA). In addition, using NMR (nuclear magnetic resonance) spectroscopy, and HRMS (high-resolution mass spectrometry) analysis, the structure of the CY@DPBA complex was efficiently elucidated. In-vitro experiments showed that the complexes formed after the treatment proved to be non-toxic on B16-F10 cells. The sub-cellular visualization of all AN was monitored by fluorescence microscopy and flow cytometry, demonstrating detectable signals of the non-metabolized CY and glycosylated CY inside melanoma cells. This study reports that the use of DPBA to image AN intracellularly is a sensitive, non-invasive and successful method that can extend its application in broad fields like drug development or metabolism-associated mechanisms.
Asunto(s)
Antocianinas , Melanoma Experimental , Animales , Antocianinas/farmacología , Línea Celular Tumoral , Melanoma Experimental/tratamiento farmacológico , Ratones , Ratones Endogámicos C57BL , Imagen ÓpticaRESUMEN
The bioaccessibility of the major carotenoids present in two commercial microalgal supplements in powder form was investigated through a standardized in vitro digestion method. The dried biomass of Arthrospira platensis contained ß-carotene (36.8 mg/100 g) and zeaxanthin (20.8 mg/100 g) as the main carotenoids as well as a high content of saturated fatty acids (61% of total fatty acids), whereas that of Chlorella pyrenoidosa was rich in lutein (37.8 mg/100 g) and had a high level of unsaturated fatty acids (65% of total fatty acids). In the case of the latter, lutein bioaccessibility was not statistically enhanced after the replacement of porcine bile extract with bovine bile extract in the in vitro digestion protocol and after the addition of coconut oil (17.8% as against to 19.2% and 19.2% vs. 18.5%, respectively). In contrast, the use of bovine bile extract along with co-digestion with coconut oil significantly enhanced the bioaccessibility of zeaxanthin from A. platensis, reaching the highest bioaccessibility of 42.8%.