Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2400946, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38736024

RESUMEN

Current research in cancer therapy focuses on personalized therapies, through nanotechnology-based targeted drug delivery systems. Particularly, controlled drug release with nanoparticles (NPs) can be designed to safely transport various active agents, optimizing delivery to specific organs and tumors, minimizing side effects. The use of microfluidics (MFs) in this field has stood out against conventional methods by allowing precise control over parameters like size, structure, composition, and mechanical/biological properties of nanoscale carriers. This review compiles applications of microfluidics in the production of core-shell NPs (CSNPs) for cancer therapy, discussing the versatility inherent in various microchannel and/or micromixer setups and showcasing how these setups can be utilized individually or in combination, as well as how this technology allows the development of new advances in more efficient and controlled fabrication of core-shell nanoformulations. Recent biological studies have achieved an effective, safe, and controlled delivery of otherwise unreliable encapsulants such as small interfering RNA (siRNA), plasmid DNA (pDNA), and cisplatin as a result of precisely tuned fabrication of nanocarriers, showing that this technology is paving the way for innovative strategies in cancer therapy nanofabrication, characterized by continuous production and high reproducibility. Finally, this review analyzes the technical, biological, and technological limitations that currently prevent this technology from becoming the standard.

2.
Toxics ; 12(5)2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38787131

RESUMEN

The presence of plastic particles in oceans has been recognized as a major environmental concern. The decrease in particle size increases their ability to directly interact with biota, with particles in the nanometer size range (nanoplastics-NPs) displaying a higher ability to penetrate biological membranes, which increases with the decrease in particle size. This study aimed to evaluate the role of life stages in the effects of poly(methyl)methacrylate (PMMA) NPs on the polychaete Hediste diversicolor, a key species in the marine food web and nutrient cycle. Thus, behavioral (burrowing activity in clean and spiked sediment) and biochemical endpoints (neurotransmission, energy reserves, antioxidant defenses, and oxidative damage) were assessed in juvenile and adult organisms after 10 days of exposure to spiked sediment (between 0.5 and 128 mg PMMA NPs/Kg sediment). Overall, the results show that H. diversicolor is sensitive to the presence of PMMA NPs. In juveniles, exposed organisms took longer to burrow in sediment, with significant differences from the controls being observed at all tested concentrations when the test was performed with clean sediment, whereas in PMMA NP-spiked sediment, effects were only found at the concentrations 8, 32, and 128 mg PMMA NPs/Kg sediment. Adults displayed lower sensitivity, with differences to controls being found, for both sediment types, at 8, 32, and 128 mg PMMA NPs/Kg sediment. In terms of Acetylcholinesterase, used as a marker of effects on neurotransmission, juveniles and adults displayed opposite trends, with exposed juveniles displaying increased activity (suggesting apoptosis), whereas in adults, overall decreased activity was found. Energy-related parameters revealed a generally similar pattern (increase in exposed organisms) and higher sensitivity in juveniles (significant effects even at the lower concentrations). NPs also demonstrated the ability to increase antioxidant defenses (higher in juveniles), with oxidative damage only being found in terms of protein carbonylation (all tested NPs conditions) in juveniles. Overall, the data reveal the potential of PMMA NPs to affect behavior and induce toxic effects in H. diversicolor, with greater effects in juveniles.

3.
Gels ; 10(4)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38667693

RESUMEN

Biopolymeric nanoparticles (NPs) have gained significant attention in several areas as an alternative to synthetic polymeric NPs due to growing environmental and immunological concerns. Among the most promising biopolymers is poly(lactic acid) (PLA), with a reported high degree of biocompatibility and biodegradability. In this work, PLA NPs were synthesized according to a controlled gelation process using a combination of single-emulsion and nanoprecipitation methods. This study evaluated the influence of several experimental parameters for accurate control of the PLA NPs' size distribution and aggregation. Tip sonication (as the stirring method), a PLA concentration of 10 mg/mL, a PVA concentration of 2.5 mg/mL, and low-molecular-weight PLA (Mw = 5000) were established as the best experimental conditions to obtain monodisperse PLA NPs. After gelification process optimization, flutamide (FLU) was used as a model drug to evaluate the encapsulation capability of the PLA NPs. The results showed an encapsulation efficiency of 44% for this cytostatic compound. Furthermore, preliminary cell viability tests showed that the FLU@PLA NPs allowed cell viabilities above 90% up to a concentration of 20 mg/L. The comprehensive findings showcase that the PLA NPs fabricated using this straightforward gelification method hold promise for encapsulating cytostatic compounds, offering a novel avenue for precise drug delivery in cancer therapy.

4.
ACS Appl Mater Interfaces ; 15(21): 25860-25872, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37200222

RESUMEN

Biopolymeric injectable hydrogels are promising biomaterials for myocardial regeneration applications. Besides being biocompatible, they adjust themselves, perfectly fitting the surrounding tissue. However, due to their nature, biopolymeric hydrogels usually lack desirable functionalities, such as antioxidant activity and electrical conductivity, and in some cases, mechanical performance. Protein nanofibrils (NFs), such as lysozyme nanofibrils (LNFs), are proteic nanostructures with excellent mechanical performance and antioxidant activity, which can work as nanotemplates to produce metallic nanoparticles. Here, gold nanoparticles (AuNPs) were synthesized in situ in the presence of LNFs, and the obtained hybrid AuNPs@LNFs were incorporated into gelatin-hyaluronic acid (HA) hydrogels for myocardial regeneration applications. The resulting nanocomposite hydrogels showed improved rheological properties, mechanical resilience, antioxidant activity, and electrical conductivity, especially for the hydrogels containing AuNPs@LNFs. The swelling and bioresorbability ratios of these hydrogels are favorably adjusted at lower pH levels, which correspond to the ones in inflamed tissues. These improvements were observed while maintaining important properties, namely, injectability, biocompatibility, and the ability to release a model drug. Additionally, the presence of AuNPs allowed the hydrogels to be monitorable through computer tomography. This work demonstrates that LNFs and AuNPs@LNFs are excellent functional nanostructures to formulate injectable biopolymeric nanocomposite hydrogels for myocardial regeneration applications.


Asunto(s)
Gelatina , Nanopartículas del Metal , Nanogeles , Oro , Ácido Hialurónico/química , Antioxidantes , Muramidasa , Materiales Biocompatibles/química , Cicatrización de Heridas , Miocardio , Hidrogeles/farmacología , Hidrogeles/química , Ingeniería de Tejidos/métodos
5.
Polymers (Basel) ; 15(5)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36904310

RESUMEN

Nowadays, packaging applications require the use of advanced materials as well as production methods that have a low environmental impact. In this study, a solvent-free photopolymerizable paper coating was developed using two acrylic monomers (2-ethylhexyl acrylate and isobornyl methacrylate). A copolymer, with a molar ratio of 2-ethylhexyl acrylate/isobornyl methacrylate of 0.64/0.36, was prepared and used as the main component of the coating formulations (50 and 60 wt%). A mixture of the monomers with the same proportion was used as a reactive solvent, yielding formulations with 100% solids. The coated papers showed an increase in the pick-up values from 6.7 to 32 g/m2 depending on the formulation used and the number of coating layers (up to two). The coated papers maintained their mechanical properties and presented improved air barrier properties (Gurley's air resistivity of ≈25 s for the higher pick-up values). All the formulations promoted a significant increase in the paper's water contact angle (all higher than 120 °) and a remarkable decrease in their water absorption (Cobb values decrease from 108 to 11 g/m2). The results confirm the potential of these solventless formulations for fabricating hydrophobic papers with potential application in packaging, following a quick, effective, and more sustainable approach.

6.
Int J Biol Macromol ; 229: 849-860, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36572084

RESUMEN

The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G') and loss (G") moduli and the G' recovery capacity of the hydrogels (from 70.05 ± 3.06 % (90:10) to 82.63 ± 1.21 % (60:40)), as well as their mechanical properties, increasing the compressive stiffness and stress from 114.02 ± 10.93 Pa (90:10) to 337.16 ± 34.03 Pa (60:40) and from 18.27 ± 1.32 kPa (90:10) to 47.17 ± 3.59 kPa (60:40), respectively. The hydrogels were non-cytotoxic against human keratinocyte cells (HaCaT), with cell viabilities above 70 % for up to 72 h. The hydrogel 60:40 was loaded with HaCaT cells (3 × 106 cells mL-1) and bioprinted. The cell viability was maintained elevated until day 7 (90 ± 3 %) after bioprinting. These results highlight that the combination of these two biopolymers was a good strategy for the development of novel hydrogel-based bioinks for extrusion 3D bioprinting applications.


Asunto(s)
Bioimpresión , Hidrogeles , Humanos , Hidrogeles/farmacología , Ingeniería de Tejidos/métodos , Celulosa/farmacología , Bioimpresión/métodos , Impresión Tridimensional , Andamios del Tejido
7.
Adv Mater ; 33(40): e2007761, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34382257

RESUMEN

Polyoxometalates are an emerging class of molecular clusters, with well-defined structures and chemical compositions that are produced through simple, low-cost, and highly reproducible methods. In particular, the wheel-shaped cluster {Mo154 } is a promising photothermal agent due to its intervalence charge transfer transitions. However, its toxicity hinders its systemic administration, being the development of a localized delivery system still incipient. Herein, an injectable and self-healing hydrogel of easy preparation and administration is developed, incorporating both {Mo154 } and doxorubicin for synergistic photothermal and chemotherapy applications. The hydrogel is composed of benzylaldehyde functionalized polyethylene glycol, poly(N-isopropylacrylamide) functionalized chitosan and {Mo154 }. The gelation occurs within 60 s at room temperature, and the dual crosslinking by Schiff base and electrostatic interactions generates a dynamic network, which enables self-healing after injection. Moreover, the hydrogel delivers chemotherapeutic drugs, with a release triggered by dual near infra-red (NIR) radiation and pH changes. This stimuli-responsive release system along with the photothermal conversion ability of the hydrogel allows the simultaneous combination of photothermal and chemotherapy. This synergic system efficiently ablates the cancer tumor in vivo with no systemic toxicity. Overall, this work paves the way for the development of novel {Mo154 }-based systems, incorporated in self-healing and injectable hydrogels for dual chemo-photothermal therapy.


Asunto(s)
Portadores de Fármacos/química , Hidrogeles/química , Rayos Infrarrojos , Terapia Fototérmica/métodos , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Doxorrubicina/química , Doxorrubicina/uso terapéutico , Humanos , Hidrogeles/farmacología , Concentración de Iones de Hidrógeno , Ratones Endogámicos C57BL , Neoplasias/tratamiento farmacológico , Polietilenglicoles/química , Trasplante Heterólogo
8.
Nanomaterials (Basel) ; 11(8)2021 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-34443888

RESUMEN

Cellulose nanocrystals (CNCs) are elongated biobased nanostructures with unique characteristics that can be explored as nanosystems in cancer treatment. Herein, the synthesis, characterization, and cellular uptake on folate receptor (FR)-positive breast cancer cells of nanosystems based on CNCs and a chitosan (CS) derivative are investigated. The physical adsorption of the CS derivative, containing a targeting ligand (folic acid, FA) and an imaging agent (fluorescein isothiocyanate, FITC), on the surface of the CNCs was studied as an eco-friendly methodology to functionalize CNCs. The fluorescent CNCs/FA-CS-FITC nanosystems with a rod-like morphology showed good stability in simulated physiological and non-physiological conditions and non-cytotoxicity towards MDA-MB-231 breast cancer cells. These functionalized CNCs presented a concentration-dependent cellular internalization with a 5-fold increase in the fluorescence intensity for the nanosystem with the higher FA content. Furthermore, the exometabolic profile of the MDA-MB-231 cells exposed to the CNCs/FA-CS-FITC nanosystems disclosed a moderate impact on the cells' metabolic activity, limited to decreased choline uptake and increased acetate release, which implies an anti-proliferative effect. The overall results demonstrate that the CNCs/FA-CS-FITC nanosystems, prepared by an eco-friendly approach, have a high affinity towards FR-positive cancer cells and thus might be applied as nanocarriers with imaging properties for active targeted therapy.

9.
Environ Sci Pollut Res Int ; 28(2): 2301-2314, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32885333

RESUMEN

The respiratory tract is the route of entry for accidentally inhaled AgNPs, which can reach the lungs and redistribute to other main organs through systemic circulation. In the present work, we aimed to evaluate silver biodistribution and biological effects after 1 or 2 intratracheal instillations (IT) of two differently sized PVP-coated AgNPs (5 and 50 nm-3 mg/kg) and ionic silver (AgNO3-1 mg/kg bw) in mice. Furthermore, nuclear magnetic resonance (NMR) metabolomics was applied to unveil pulmonary metabolic variations. Animals exposed to 5 nm AgNP (AgNP5) showed higher levels of ionic silver in organs, especially in the lung, spleen, kidney and liver, while animals exposed to 50 nm AgNP (AgNP50) showed higher levels of silver in the blood. Animals exposed to AgNP50 excreted higher amounts of silver than those exposed to AgNP5, which is consistent with higher tissue accumulation of silver in animals exposed to the latter. Lung metabolic profiling revealed several Ag-induced alterations in metabolites involved in different pathways, such as glycolysis and tricarboxylic acid (TCA) cycle, amino acid and phospholipid metabolism, and antioxidant defense. Notably, most of the metabolic changes observed after 1 IT were absent in animals subjected to 2 IT of AgNO3, or reversed for AgNPs, suggesting adaptation mechanisms to cope with the initial insult and recover homeostasis. Graphical abstract.


Asunto(s)
Nanopartículas del Metal , Plata , Animales , Pulmón , Nanopartículas del Metal/toxicidad , Ratones , Nitrato de Plata , Distribución Tisular
10.
Mater Sci Eng C Mater Biol Appl ; 118: 111350, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33254971

RESUMEN

The aim of the present study was to develop innovative patches for dermo-cosmetic applications based on dissolvable hyaluronic acid (HA) microneedles (MNs) combined with bacterial nanocellulose (BC) as the back layer. HA was employed as an active biomacromolecule, with hydrating and regenerative properties and volumizing effect, whereas BC was used as support for the incorporation of an additional bioactive molecule. Rutin, a natural antioxidant, was selected as the model bioactive compound to demonstrate the effectiveness of the system. The obtained HA-MNs arrays present homogenous and regular needles, with 200 µm in base width, 450 µm in height and 500 µm tip-to-tip distance, and with sufficient mechanical force to withstand skin insertion with a failure force higher than 0.15 N per needle. The antioxidant activity of rutin was neither affected by its incorporation in the MNs system nor by their storage at room temperature for 6 months. Preliminary in vivo studies in human volunteers unveiled their safety and cutaneous compatibility, as no significant changes in barrier function, stratum corneum hydration nor redness were detected. These results confirm the potentiality of this novel system for skin applications, e.g. cosmetics, taking advantage of the recognized properties of HA and the capacity of BC to control the release of bioactive molecules.


Asunto(s)
Sistemas de Liberación de Medicamentos , Ácido Hialurónico , Administración Cutánea , Humanos , Agujas , Piel
11.
ACS Appl Mater Interfaces ; 12(30): 34208-34216, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32588615

RESUMEN

Nowadays, the development of sustainable high-performance functional nanomaterials is in the spotlight. In this work, we report the preparation of a new generation of flexible and high electroconductive nanopapers based on nanofibrillated cellulose (NFC) and copper nanowires (CuNWs). Homogeneous red brick color nanopapers (thickness 30.2-36.4 µm) were obtained by mixing different amounts of NFC aqueous suspensions and CuNWs (1, 5, 10, 20, and 50 wt %), followed by vacuum filtration and drying. scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) analysis confirmed the incorporation of the different amounts of CuNWs, and their uniform and random distribution. All of the nanomaterials displayed good mechanical properties, viz., Young's modulus = 2.62-4.72 GPa, tensile strength = 30.2-70.6 MPa, and elongation at break = 2.3-4.1% for the nanopapers with 50 and 1 wt % of CuNWs mass fraction, respectively. The electrical conductivity of these materials strongly depends on the CuNW content, attaining a value of 5.43 × 104 S·m-1 for the nanopaper with a higher mass fraction. This is one of the highest values reported so far for nanocellulose-based conductive materials. Therefore, these nanopapers can be seen as an excellent inexpensive and green alternative to the current electroconductive materials for applications in electronic devices, energy storage, or sensors.

12.
Carbohydr Polym ; 238: 116197, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32299546

RESUMEN

This work focuses on exploring combinations of disintegrated bacterial cellulose nanofibres (BC) with graphene oxide (GO) (reduced and non-reduced) and phase change materials (PCMs) prepared in the form of foam-like structures. The presence of GO remarkable improves the fire-retardancy and provides dimensional stability to the foams while PCMs gives thermal energy storage capacity. The foams were exposed to methyltrimethoxysilane (MTMS) vapour to become hydrophobic which was confirmed by measuring water absorption capacity and water contact angle. To extend the multifunctionality of these nanocomposite foams, a selected composition was impregnated into an open-cell aluminium foam creating a hybrid structure (Al-BC/GO) with higher mechanical properties (increase in stress of 100 times) and high sound absorption coefficient (near 1 between 1000-4000 Hz). The low thermal conductivity confirms that this hybrid structure is a thermal insulator. These advantages highlight the potential applications of the proposed materials e.g. construction, automotive and aeronautical sectors.

13.
Carbohydr Polym ; 238: 116210, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32299563

RESUMEN

The present study explores the preparation of dual nanofibrillar-based bio-sorbent films composed of cellulose nanofibrils (CNFs) and lysozyme nanofibrils (LNFs) for application in the removal of Hg(II) from aqueous solutions. The free-standing films were fabricated via simple vacuum filtration of water suspensions of CNFs and LNFs and disclose good mechanical and thermal properties. The Hg(II) removal efficiency was evaluated by atomic fluorescence spectroscopy in ultra-pure and natural spring waters contaminated with environmental realistic levels of mercury (50 µg L-1). The removal efficiency is pH-dependent reaching a maximum of 99 % after 24 h at a pH value close to the isoelectric point of the protein. Under the experimental conditions, the sorption kinetics are well described by the pseudo-second-order and Elovich models, suggesting a chemisorption mechanism. These results demonstrate the ability of the dual nanofibrillar-based films to remove Hg(II) from water samples reaching a residual concentration lower than the guideline value for water intended for human consumption (1 µg L-1). Therefore, the CNFs/LNFs bio-sorbents might be a solution to treat low-concentrated mercury-contaminated waters.


Asunto(s)
Celulosa/química , Agua Potable/química , Mercurio/aislamiento & purificación , Muramidasa/química , Nanofibras/química , Nanogeles/química , Purificación del Agua , Contaminantes Químicos del Agua/aislamiento & purificación
14.
Nanomaterials (Basel) ; 10(4)2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32231070

RESUMEN

Nanostructured patches composed of bacterial nanocellulose (BNC), hyaluronic acid (HA) and diclofenac (DCF) were developed, envisioning the treatment of aphthous stomatitis. Freestanding patches were prepared via diffusion of aqueous solutions of HA and DCF, with different concentrations of DCF, into the wet BNC three-dimensional porous network. The resultant dual polysaccharides-based patches with a nanostructured morphology present thermal stability up to 200 °C, as well as good dynamic mechanical properties, with a storage modulus higher than 1.0 GPa. In addition, the patches are non-cytotoxic to human keratinocytes (HaCaT cells), with a cell viability of almost 100% after 24 h. The in vitro release profile of DCF from the patches was evaluated in simulated saliva, and the data refer to a diffusion- and swelling-controlled drug-release mechanism. The attained results hint at the possibility of using these dual polysaccharides-based oral mucosal patches to target aphthous stomatitis.

15.
Materials (Basel) ; 13(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121128

RESUMEN

Gold nanoparticles (AuNPs) are one of the most studied nanosystems with great potential for biomedical applications, including cancer therapy. Although some gold-based systems have been described, the use of green and faster methods that allow the control of their properties is of prime importance. Thus, the present study reports a one-minute microwave-assisted synthesis of fucoidan-coated AuNPs with controllable size and high antitumoral activity. The NPs were synthesized using a fucoidan-enriched fraction extracted from Fucus vesiculosus, as the reducing and capping agent. The ensuing monodispersed and spherical NPs exhibit tiny diameters between 5.8 and 13.4 nm for concentrations of fucoidan between 0.5 and 0.05% (w/v), respectively, as excellent colloidal stability in distinct solutions and culture media. Furthermore, the NPs present antitumoral activity against three human tumor cell lines (MNT-1, HepG2, and MG-63), and flow cytometry in combination with dark-field imaging confirmed the cellular uptake of NPs by MG-63 cell line.

16.
RSC Adv ; 9(68): 39893-39903, 2019 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-35541373

RESUMEN

The brown macroalgae Bifurcaria bifurcata have gained special attention due to their ability to biosynthesize linear diterpenes (rarely found in other species). However, the conventional extraction methods normally used to extract these compounds involve organic solvents and often high temperatures, leading to the degradation of thermo-labile compounds. In this context, the main objective of this work was to study and optimize for the first time the extraction of diterpenes from B. bifurcata through an environmentally friendly methodology, namely, high pressure extraction (HPE) using ethanol : water. This was compared with conventional Soxhlet extraction, using dichloromethane. Box-Behnken design was employed to evaluate the linear, quadratic, and interaction effects of 3 independent variables (pressure (X 1), ethanol percentage (X 2), and time of extraction (X 3)) on response variables (extraction yield and diterpenes content (mg g-1 of extract and mg kg-1 of dry weight)) and the optimal extraction conditions (X 1: 600 MPa; X 2: 80%; X 3: 5 min) were estimated by response surface methodology (RSM). B. bifurcata extract obtained under HPE optimal conditions showed a diterpenes content (612.2 mg g-1 of extract) 12.2 fold higher than that obtained by conventional extraction (50.1 mg g-1 of extract). The HPE extract, obtained under optimal conditions, showed antioxidant and antibacterial (against Staphylococcus aureus) activities considerably higher than the Soxhlet extract, and also presented a promising synergic effect with antibiotics, improving the antibiotic efficacy against S. aureus. In conclusion, these results indicate that HPE is a promising methodology, compared to conventional methodologies to obtain linear diterpene rich extracts from B. bifurcata with great potential to be exploited in pharmaceutical or biomedical applications.

17.
Int J Biol Macromol ; 115: 518-527, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29596936

RESUMEN

Deep eutectic solvents (DESs), a novel generation of solvents, have recently been described as efficient and timesaving fibrillation agents for proteins. In this context, the present work aims at assessing the effect of the hydrogen bond donor (HBD) of cholinium chloride ([Ch]Cl):carboxylic acid based DESs on the dimensions (length and width) of lysozyme nanofibers (LNFs). Mono-, di- and tri-carboxylic acids (acetic, lactic, levulinic, malic and citric acids) were used to prepare different DES formulations, which were successfully used on the fibrillation of lysozyme. The results showed that the carboxylic acid (i.e. the HBD) plays an important role on the fibrillation efficiency and on the length of the ensuing LNFs with aspect-ratios always higher than those obtained by fibrillation with [Ch]Cl. The longest LNFs were obtained using lactic acid as the HBD with an average length of 1004 ±â€¯334 nm and width of 31.8 ±â€¯6.8 nm, and thus an aspect-ratio of ca. 32. The potential of these protein nanofibers as reinforcing additives was evaluated by preparing pullulan (PL)-based nanocomposite films containing 5% LNFs with different aspect-ratios, resulting in highly homogenous and transparent films with improved mechanical performance.


Asunto(s)
Muramidasa/química , Nanofibras/química , Solventes/química , Animales , Glucanos/química , Enlace de Hidrógeno , Nanocompuestos/química
18.
J Proteome Res ; 17(4): 1636-1646, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29498529

RESUMEN

The expansion of biomedical and therapeutic applications of silver nanoparticles (AgNPs) raises the need to further understand their biological effects on human cells. In this work, NMR metabolomics has been applied to reveal the metabolic effects of AgNPs toward human hepatoma (HepG2) cells, which are relevant with respect to nanoparticle accumulation and detoxification. Cellular responses to widely disseminated citrate-coated AgNPs (Cit30) and to emergent biogenic AgNPs prepared using an aqueous plant extract as reducing and stabilizing agent (GS30) have been compared with a view to assess the influence of nanoparticle coating on the metabolic effects produced. Subtoxic concentrations (IC5 and IC20) of both nanoparticle types caused profound changes in the cellular metabolome, suggesting adaptations in energy production processes (glucose metabolism and the phosphocreatine system), antioxidant defenses, protein degradation and lipid metabolism. These signatures were proposed to reflect mainly metabolism-mediated protective mechanisms and were found to be largely common to Cit30 and GS30 AgNPs, although differences in the magnitude of response, not captured by conventional cytotoxicity assessment, were detected. Overall, this study highlights the value of NMR metabolomics for revealing subtoxic biological effects and helping to understand cell-nanomaterial interactions.


Asunto(s)
Hígado/metabolismo , Metaboloma/efectos de los fármacos , Metabolómica/métodos , Nanopartículas del Metal/toxicidad , Plata/toxicidad , Ácido Cítrico/farmacología , Excipientes/farmacología , Células Hep G2 , Humanos , Hígado/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Sustancias Reductoras/farmacología
19.
Plant Physiol Biochem ; 121: 89-98, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29096177

RESUMEN

This study investigates the phytotoxicity of chronic exposure (up to 20 d) of different TiO2 nanoparticles (TiO2-NP) concentrations (5, 50, 150 mg L-1) in Triticum aestivum. Germination was not affected by TiO2-NP exposure and seedling shoot length (3 d) was enhanced. Contrarily, plants' shoot growth (20 d) was impaired. Effects on membrane permeability and total antioxidant capacity in TiO2-NP chronic exposure were organ dependent: increased in leaves and decreased in roots. Roots also showed lower levels of lipid peroxidation. Flow cytometry revealed no changes in ploidy levels as well as in the cell cycle dynamics for both organs. However, TiO2-NP induced clastogenic effects in roots with increases in micronucleated cells in root tips in a dose dependent manner. Also, increases of DNA single/double strand breaks were found in leaves, and effects were similar to all doses. Ti uptake and translocation to leaves were confirmed by ICP-MS, which was dependent on NP concentration. Overall, these data indicate that TiO2-NP phytotoxicity is more severe after longer exposure periods, higher doses and more severe for shoots than roots. The observed effects are a result of both direct and indirect (oxidative stress and/or water imbalances) action of TiO2-NP. Additionally, results highlight the negative impact that TiO2-NP may have on crop growth and production and to the risk of trophic transfer.


Asunto(s)
Roturas del ADN de Doble Cadena/efectos de los fármacos , Germinación/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Nanopartículas , Titanio/farmacología , Triticum/metabolismo , Raíces de Plantas/metabolismo , Brotes de la Planta/metabolismo
20.
Colloids Surf B Biointerfaces ; 147: 36-44, 2016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-27478961

RESUMEN

Amyloid fibrils have recently gained a lot of attention due to their morphology, functionality and mechanical strength, allowing for their application in nanofiber-based materials, biosensors, bioactive membranes and tissue engineering scaffolds. The in vitro production of amyloid fibrils is still a slow process, thus hampering the massive production of nanofibers and its consequent use. This work presents a new and faster (2-3h) fibrillation method for hen egg white lysozyme (HEWL) using a deep eutectic solvent based on cholinium chloride and acetic acid. Nanofibers with dimensions of 0.5-1µm in length and 0.02-0.1µm in thickness were obtained. Experimental variables such as temperature and pH were also studied, unveiling their influence in fibrillation time and nanofibers morphology. These results open a new scope for protein fibrillation into nanofibers with applications ranging from medicine to soft matter and nanotechnology.


Asunto(s)
Muramidasa/química , Nanofibras/química , Solventes/química , Andamios del Tejido , Animales , Pollos , Femenino , Concentración de Iones de Hidrógeno , Cinética , Modelos Moleculares , Ingeniería de Tejidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA